南瓜
果胶
多糖
脂多糖
化学
MAPK/ERK通路
TLR4型
一氧化氮
信号转导
生物
生物化学
医学
免疫学
病理
替代医学
有机化学
作者
Linlin Huang,Qi Sun,Quanhong Li,Xin Li
标识
DOI:10.1016/j.ijbiomac.2024.130510
摘要
Pectin polysaccharides have demonstrated diverse biological activities, however, the inflammatory potential of pectin polysaccharides extracted from Cucurbita moschata Duch remains unexplored. This study aims to extract, characterize and evaluate the effects of pumpkin pectin polysaccharide on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 cells and dextran sulfate sodium (DSS)-induced colitis in mice, along with its underlying mechanism of action. Initially, we extracted three fractions of pectin polysaccharides from pumpkin and screened them for anti-inflammatory activity in LPS-induced macrophages, identifying CMDP-3a as the most potent anti-inflammatory fraction. Subsequently, CMDP-3a underwent comprehensive characterization through chromatography and spectroscopic analysis, revealing CMDP-3a as an RG-I-HG type pectin polysaccharide with →4)-α-D-GalpA-(1 → and →4)-α-D-GalpA-(1 → 2,4)-α-L-Rhap-(1 → as the main chain. Further, in the LPS-induced RAW264.7 cells model, treatment with CMDP-3a significantly down-regulated the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6) by inhibiting the MAPK and NF-κB signaling pathways. Finally, in a mouse colitis model, CMDP-3a administration obviously inhibited DSS-induced pathological alterations and reduced inflammatory cytokine expressions in the colonic tissues by down-regulating the TLR4/NF-κB and MAPK pathways. These findings provide a molecular basis for the potential application of CMDP-3a in reducing inflammatory responses.
科研通智能强力驱动
Strongly Powered by AbleSci AI