Realization of digital twin for dynamic control toward sample variation of ion exchange chromatography in antibody separation

均方误差 稳健性(进化) 实现(概率) 计算机科学 离子色谱法 联营 色谱法 数学 化学 人工智能 统计 生物化学 基因
作者
Ce Shi,Xu‐Jun Chen,Xue‐Zhao Zhong,Yan Yang,Dong‐Qiang Lin,Ran Chen
出处
期刊:Biotechnology and Bioengineering [Wiley]
标识
DOI:10.1002/bit.28660
摘要

Abstract Digital twin (DT) is a virtual and digital representation of physical objects or processes. In this paper, this concept is applied to dynamic control of the collection window in the ion exchange chromatography (IEC) toward sample variations. A possible structure of a feedforward model‐based control DT system was proposed. Initially, a precise IEC mechanistic model was established through experiments, model fitting, and validation. The average root mean square error (RMSE) of fitting and validation was 8.1% and 7.4%, respectively. Then a model‐based gradient optimization was performed, resulting in a 70.0% yield with a remarkable 11.2% increase. Subsequently, the DT was established by systematically integrating the model, chromatography system, online high‐performance liquid chromatography, and a server computer. The DT was validated under varying load conditions. The results demonstrated that the DT could offer an accurate control with acidic variants proportion and yield difference of less than 2% compared to the offline analysis. The embedding mechanistic model also showed a positive predictive performance with an average RMSE of 11.7% during the DT test under >10% sample variation. Practical scenario tests indicated that tightening the control target could further enhance the DT robustness, achieving over 98% success rate with an average yield of 72.7%. The results demonstrated that the constructed DT could accurately mimic real‐world situations and perform an automated and flexible pooling in IEC. Additionally, a detailed methodology for applying DT was summarized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huhu完成签到 ,获得积分10
刚刚
小熊妮子爱喝草莓乌龙茶完成签到 ,获得积分10
刚刚
yhmi0809完成签到,获得积分10
1秒前
唯美完成签到,获得积分10
2秒前
糖果呖咕呖咕完成签到,获得积分10
3秒前
顾陌完成签到,获得积分10
5秒前
坦率绮山完成签到 ,获得积分10
7秒前
10秒前
阿越完成签到 ,获得积分10
11秒前
徐徐徐应助科研通管家采纳,获得20
11秒前
汉堡包应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
InfoNinja应助科研通管家采纳,获得40
12秒前
12秒前
Survive完成签到,获得积分10
15秒前
莫华龙发布了新的文献求助10
16秒前
Lucas应助1huiqina采纳,获得10
16秒前
panpanliumin完成签到,获得积分0
20秒前
攀攀完成签到 ,获得积分20
20秒前
梦丸完成签到 ,获得积分10
20秒前
哭泣的缘郡完成签到 ,获得积分10
20秒前
小李完成签到 ,获得积分10
22秒前
23秒前
SC完成签到 ,获得积分10
23秒前
自然怀梦完成签到,获得积分10
28秒前
踏雪飞鸿完成签到,获得积分10
28秒前
不配.应助饱满书文采纳,获得20
29秒前
30秒前
32秒前
糕冷草莓完成签到,获得积分10
34秒前
1huiqina发布了新的文献求助10
34秒前
ycw992847127完成签到,获得积分10
35秒前
白白白完成签到,获得积分10
36秒前
李克杨发布了新的文献求助10
36秒前
SSSstriker完成签到,获得积分10
39秒前
小美爱科研完成签到,获得积分10
39秒前
爱吃修勾右完成签到 ,获得积分20
41秒前
俭朴新之完成签到 ,获得积分10
41秒前
David完成签到 ,获得积分0
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137101
求助须知:如何正确求助?哪些是违规求助? 2788086
关于积分的说明 7784523
捐赠科研通 2444109
什么是DOI,文献DOI怎么找? 1299758
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011