DR-FER: Discriminative and Robust Representation Learning for Facial Expression Recognition

判别式 计算机科学 人工智能 分类器(UML) 表达式(计算机科学) 代表(政治) 模式识别(心理学) 相似性(几何) 面部表情 自然语言处理 机器学习 图像(数学) 政治 政治学 法学 程序设计语言
作者
Ming Li,Huazhu Fu,Shengfeng He,Hehe Fan,Jun Liu,Jussi Keppo,Mike Zheng Shou
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 6297-6309
标识
DOI:10.1109/tmm.2023.3347849
摘要

Learning discriminative and robust representations is important for facial expression recognition (FER) due to subtly different emotional faces and their subjective annotations. Previous works usually address one representation solely because these two goals seem to be contradictory for optimization. Their performances inevitably suffer from challenges from the other representation. In this article, by considering this problem from two novel perspectives, we demonstrate that discriminative and robust representations can be learned in a unified approach, i.e., DR-FER, and mutually benefit each other. Moreover, we make it with the supervision from only original annotations. Specifically, to learn discriminative representations, we propose performing masked image modeling (MIM) as an auxiliary task to force our network to discover expression-related facial areas. This is the first attempt to employ MIM to explore discriminative patterns in a self-supervised manner. To extract robust representations, we present a category-aware self-paced learning schedule to mine high-quality annotated ( easy ) expressions and incorrectly annotated ( hard ) counterparts. We further introduce a retrieval similarity-based relabeling strategy to correct hard expression annotations, exploiting them more effectively. By enhancing the discrimination ability of the FER classifier as a bridge, these two learning goals significantly strengthen each other. Extensive experiments on several popular benchmarks demonstrate the superior performance of our DR-FER. Moreover, thorough visualizations and extra experiments on manually annotation-corrupted datasets show that our approach successfully accomplishes learning both discriminative and robust representations simultaneously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QianZ发布了新的文献求助10
1秒前
Liu完成签到,获得积分10
1秒前
脑洞疼应助2222采纳,获得10
1秒前
吴学仕发布了新的文献求助10
1秒前
大模型应助清秀的小白菜采纳,获得10
2秒前
爆米花应助qwer采纳,获得10
2秒前
2秒前
22完成签到,获得积分10
2秒前
caicai发布了新的文献求助10
3秒前
3秒前
可爱语芹发布了新的文献求助10
4秒前
4秒前
liuzengzhang666完成签到,获得积分10
5秒前
22发布了新的文献求助10
6秒前
冷静烨霖发布了新的文献求助10
6秒前
Waley驳回了大个应助
7秒前
Akim应助ronll采纳,获得10
7秒前
7秒前
风清扬发布了新的文献求助10
7秒前
领导范儿应助无糖零脂采纳,获得10
8秒前
英俊的铭应助哒哒哒采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
wf发布了新的文献求助10
10秒前
麦田的守望者完成签到,获得积分10
11秒前
11秒前
11秒前
Doss发布了新的文献求助10
11秒前
YANG完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
我是老大应助欢呼的开山采纳,获得10
13秒前
瘦瘦达完成签到,获得积分10
13秒前
上官若男应助caicai采纳,获得10
13秒前
小青椒应助罗婉婷采纳,获得100
14秒前
zy发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
小陈医师完成签到,获得积分10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277