DR-FER: Discriminative and Robust Representation Learning for Facial Expression Recognition

判别式 计算机科学 人工智能 分类器(UML) 表达式(计算机科学) 代表(政治) 模式识别(心理学) 相似性(几何) 面部表情 自然语言处理 机器学习 图像(数学) 政治学 政治 程序设计语言 法学
作者
Ming Li,Huazhu Fu,Shengfeng He,Hehe Fan,Jun Liu,Jussi Keppo,Mike Zheng Shou
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 6297-6309
标识
DOI:10.1109/tmm.2023.3347849
摘要

Learning discriminative and robust representations is important for facial expression recognition (FER) due to subtly different emotional faces and their subjective annotations. Previous works usually address one representation solely because these two goals seem to be contradictory for optimization. Their performances inevitably suffer from challenges from the other representation. In this article, by considering this problem from two novel perspectives, we demonstrate that discriminative and robust representations can be learned in a unified approach, i.e., DR-FER, and mutually benefit each other. Moreover, we make it with the supervision from only original annotations. Specifically, to learn discriminative representations, we propose performing masked image modeling (MIM) as an auxiliary task to force our network to discover expression-related facial areas. This is the first attempt to employ MIM to explore discriminative patterns in a self-supervised manner. To extract robust representations, we present a category-aware self-paced learning schedule to mine high-quality annotated ( easy ) expressions and incorrectly annotated ( hard ) counterparts. We further introduce a retrieval similarity-based relabeling strategy to correct hard expression annotations, exploiting them more effectively. By enhancing the discrimination ability of the FER classifier as a bridge, these two learning goals significantly strengthen each other. Extensive experiments on several popular benchmarks demonstrate the superior performance of our DR-FER. Moreover, thorough visualizations and extra experiments on manually annotation-corrupted datasets show that our approach successfully accomplishes learning both discriminative and robust representations simultaneously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷大门发布了新的文献求助10
1秒前
有魅力白桃完成签到,获得积分10
1秒前
烟花应助zhongzihao采纳,获得10
1秒前
昭明发布了新的文献求助10
1秒前
MiRoRo完成签到 ,获得积分10
1秒前
森森发布了新的文献求助10
2秒前
2秒前
完美世界应助llllll采纳,获得10
2秒前
科目三应助Phoebe0730采纳,获得30
3秒前
火星上枫发布了新的文献求助10
3秒前
yao完成签到,获得积分10
4秒前
嘿嘿发布了新的文献求助10
5秒前
5秒前
科研通AI6应助Gigi230采纳,获得10
5秒前
hh完成签到 ,获得积分10
5秒前
王粒伊完成签到,获得积分10
8秒前
天天快乐应助隐千采纳,获得20
9秒前
茶茶发布了新的文献求助10
9秒前
Jasper应助沸羊羊采纳,获得10
9秒前
小巧的灵竹完成签到,获得积分10
10秒前
10秒前
侯侯侯完成签到,获得积分10
10秒前
科研通AI6应助小邓采纳,获得10
10秒前
morena发布了新的文献求助10
10秒前
HW完成签到 ,获得积分10
11秒前
英俊的铭应助mhbddg采纳,获得10
11秒前
洵洵完成签到,获得积分10
13秒前
13秒前
毛脸雷公嘴完成签到,获得积分10
13秒前
zcj完成签到,获得积分10
14秒前
14秒前
Liu完成签到,获得积分10
14秒前
zk完成签到 ,获得积分10
15秒前
陶然共忘机完成签到 ,获得积分10
15秒前
15秒前
15秒前
活泼又晴发布了新的文献求助10
15秒前
geen完成签到,获得积分20
15秒前
李琳完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252162
求助须知:如何正确求助?哪些是违规求助? 4415980
关于积分的说明 13748195
捐赠科研通 4287828
什么是DOI,文献DOI怎么找? 2352660
邀请新用户注册赠送积分活动 1349440
关于科研通互助平台的介绍 1308945