DR-FER: Discriminative and Robust Representation Learning for Facial Expression Recognition

判别式 计算机科学 人工智能 分类器(UML) 表达式(计算机科学) 代表(政治) 模式识别(心理学) 相似性(几何) 面部表情 自然语言处理 机器学习 图像(数学) 政治 政治学 法学 程序设计语言
作者
Ming Li,Huazhu Fu,Shengfeng He,Hehe Fan,Jun Liu,Jussi Keppo,Mike Zheng Shou
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 6297-6309
标识
DOI:10.1109/tmm.2023.3347849
摘要

Learning discriminative and robust representations is important for facial expression recognition (FER) due to subtly different emotional faces and their subjective annotations. Previous works usually address one representation solely because these two goals seem to be contradictory for optimization. Their performances inevitably suffer from challenges from the other representation. In this article, by considering this problem from two novel perspectives, we demonstrate that discriminative and robust representations can be learned in a unified approach, i.e., DR-FER, and mutually benefit each other. Moreover, we make it with the supervision from only original annotations. Specifically, to learn discriminative representations, we propose performing masked image modeling (MIM) as an auxiliary task to force our network to discover expression-related facial areas. This is the first attempt to employ MIM to explore discriminative patterns in a self-supervised manner. To extract robust representations, we present a category-aware self-paced learning schedule to mine high-quality annotated ( easy ) expressions and incorrectly annotated ( hard ) counterparts. We further introduce a retrieval similarity-based relabeling strategy to correct hard expression annotations, exploiting them more effectively. By enhancing the discrimination ability of the FER classifier as a bridge, these two learning goals significantly strengthen each other. Extensive experiments on several popular benchmarks demonstrate the superior performance of our DR-FER. Moreover, thorough visualizations and extra experiments on manually annotation-corrupted datasets show that our approach successfully accomplishes learning both discriminative and robust representations simultaneously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
科研通AI6.1应助孤梦落雨采纳,获得10
2秒前
完美世界应助Dnil采纳,获得10
3秒前
YY完成签到 ,获得积分10
4秒前
Seamily发布了新的文献求助10
4秒前
4秒前
阿龙发布了新的文献求助10
4秒前
5秒前
xyf发布了新的文献求助10
6秒前
6秒前
7秒前
乐乐应助传统的戎采纳,获得10
7秒前
kk完成签到 ,获得积分10
8秒前
小蘑菇应助骆驼顶顶采纳,获得10
8秒前
1112发布了新的文献求助10
8秒前
桑榆非晚发布了新的文献求助10
8秒前
8秒前
LONGQIX发布了新的文献求助10
9秒前
逸风望发布了新的文献求助10
9秒前
暴躁的从露完成签到,获得积分10
9秒前
10秒前
FEAAK发布了新的文献求助10
10秒前
华仔应助王王源采纳,获得10
11秒前
john发布了新的文献求助10
11秒前
轩丫丫发布了新的文献求助10
11秒前
子子发布了新的文献求助10
12秒前
nimo发布了新的文献求助10
13秒前
孤梦落雨发布了新的文献求助10
14秒前
斯文败类应助旦皋采纳,获得10
15秒前
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
18秒前
喵喵完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助30
19秒前
shinian发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736345
求助须知:如何正确求助?哪些是违规求助? 5365448
关于积分的说明 15332933
捐赠科研通 4880224
什么是DOI,文献DOI怎么找? 2622747
邀请新用户注册赠送积分活动 1571635
关于科研通互助平台的介绍 1528489