DR-FER: Discriminative and Robust Representation Learning for Facial Expression Recognition

判别式 计算机科学 人工智能 分类器(UML) 表达式(计算机科学) 代表(政治) 模式识别(心理学) 相似性(几何) 面部表情 自然语言处理 机器学习 图像(数学) 政治 政治学 法学 程序设计语言
作者
Ming Li,Huazhu Fu,Shengfeng He,Hehe Fan,Jun Liu,Jussi Keppo,Mike Zheng Shou
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 6297-6309
标识
DOI:10.1109/tmm.2023.3347849
摘要

Learning discriminative and robust representations is important for facial expression recognition (FER) due to subtly different emotional faces and their subjective annotations. Previous works usually address one representation solely because these two goals seem to be contradictory for optimization. Their performances inevitably suffer from challenges from the other representation. In this article, by considering this problem from two novel perspectives, we demonstrate that discriminative and robust representations can be learned in a unified approach, i.e., DR-FER, and mutually benefit each other. Moreover, we make it with the supervision from only original annotations. Specifically, to learn discriminative representations, we propose performing masked image modeling (MIM) as an auxiliary task to force our network to discover expression-related facial areas. This is the first attempt to employ MIM to explore discriminative patterns in a self-supervised manner. To extract robust representations, we present a category-aware self-paced learning schedule to mine high-quality annotated ( easy ) expressions and incorrectly annotated ( hard ) counterparts. We further introduce a retrieval similarity-based relabeling strategy to correct hard expression annotations, exploiting them more effectively. By enhancing the discrimination ability of the FER classifier as a bridge, these two learning goals significantly strengthen each other. Extensive experiments on several popular benchmarks demonstrate the superior performance of our DR-FER. Moreover, thorough visualizations and extra experiments on manually annotation-corrupted datasets show that our approach successfully accomplishes learning both discriminative and robust representations simultaneously.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
和谐青柏应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
1秒前
ilihe应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
小蘑菇应助落寞飞烟采纳,获得100
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
1秒前
TT发布了新的文献求助10
1秒前
王玉发布了新的文献求助30
2秒前
He发布了新的文献求助10
2秒前
2秒前
李健应助哈哈哈66采纳,获得10
2秒前
TCXXS完成签到 ,获得积分10
3秒前
田様应助机灵的友儿采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
6秒前
天天天蓝完成签到,获得积分10
7秒前
CC发布了新的文献求助10
7秒前
7秒前
NexusExplorer应助顺利萃采纳,获得10
7秒前
科目三应助唠叨小羊采纳,获得10
8秒前
能干吐司发布了新的文献求助10
9秒前
10秒前
He完成签到,获得积分10
11秒前
roosterpan完成签到,获得积分10
11秒前
HOXXXiii完成签到,获得积分10
12秒前
12秒前
12秒前
orixero应助泽秀儿采纳,获得10
12秒前
13秒前
mark2021发布了新的文献求助60
13秒前
slmj完成签到,获得积分10
13秒前
nnnaaaa完成签到,获得积分10
14秒前
lixia完成签到 ,获得积分10
14秒前
英姑应助roosterpan采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637437
求助须知:如何正确求助?哪些是违规求助? 4743337
关于积分的说明 14999087
捐赠科研通 4795612
什么是DOI,文献DOI怎么找? 2562091
邀请新用户注册赠送积分活动 1521554
关于科研通互助平台的介绍 1481559