Carbon capture, utilization and sequestration systems design and operation optimization: Assessment and perspectives of artificial intelligence opportunities

计算机科学 碳纤维 固碳 碳捕获和储存(时间表) 环境科学 废物管理 工程类 化学 气候变化 地质学 复合数 算法 有机化学 海洋学 二氧化碳
作者
Eslam G. Al-Sakkari,Ahmed Ragab,Hanane Dagdougui,Daria C. Boffito,Mouloud Amazouz
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:917: 170085-170085 被引量:17
标识
DOI:10.1016/j.scitotenv.2024.170085
摘要

Carbon capture, utilization, and sequestration (CCUS) is a promising solution to decarbonize the energy and industrial sectors to mitigate climate change. An integrated assessment of technological options is required for the effective deployment of CCUS large-scale infrastructure between CO2 production and utilization/sequestration nodes. However, developing cost-effective strategies from engineering and operation perspectives to implement CCUS is challenging. This is due to the diversity of upstream emitting processes located in different geographical areas, available downstream utilization technologies, storage sites capacity/location, and current/future energy/emissions/economic conditions. This paper identifies the need to achieve a robust hybrid assessment tool for CCUS modeling, simulation, and optimization based mainly on artificial intelligence (AI) combined with mechanistic methods. Thus, a critical literature review is conducted to assess CCUS technologies and their related process modeling/simulation/optimization techniques, while evaluating the needs for improvements or new developments to reduce overall CCUS systems design and operation costs. These techniques include first principles- based and data-driven ones, i.e. AI and related machine learning (ML) methods. Besides, the paper gives an overview on the role of life cycle assessment (LCA) to evaluate CCUS systems where the combined LCA-AI approach is assessed. Other advanced methods based on the AI/ML capabilities/algorithms can be developed to optimize the whole CCUS value chain. Interpretable ML combined with explainable AI can accelerate optimum materials selection by giving strong rules which accelerates the design of capture/utilization plants afterwards. Besides, deep reinforcement learning (DRL) coupled with process simulations will accelerate process design/operation optimization through considering simultaneous optimization of equipment sizing and operating conditions. Moreover, generative deep learning (GDL) is a key solution to optimum capture/utilization materials design/discovery. The developed AI methods can be generalizable where the extracted knowledge can be transferred to future works to help cutting the costs of CCUS value chain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
迅速的晟睿完成签到,获得积分10
3秒前
无花果应助牛八先生采纳,获得10
4秒前
Roc发布了新的文献求助10
4秒前
ding应助LNN采纳,获得10
6秒前
6秒前
田様应助小秦采纳,获得10
10秒前
evisure完成签到,获得积分10
10秒前
科研通AI2S应助小九在找文采纳,获得10
11秒前
11秒前
舒舒发布了新的文献求助10
14秒前
15秒前
自由可乐完成签到,获得积分10
16秒前
16秒前
阿明发布了新的文献求助10
19秒前
黄玥发布了新的文献求助10
21秒前
狄狄完成签到,获得积分20
22秒前
23秒前
23秒前
23秒前
淡定白易完成签到,获得积分10
25秒前
Schroenius发布了新的文献求助10
27秒前
27秒前
超级绫完成签到 ,获得积分10
28秒前
柒柒发布了新的文献求助10
28秒前
LZY发布了新的文献求助10
29秒前
星辰大海应助狄狄采纳,获得10
29秒前
Lucas应助黄玥采纳,获得10
30秒前
小M发布了新的文献求助10
30秒前
30秒前
小张完成签到 ,获得积分10
31秒前
31秒前
32秒前
wanci应助科研通管家采纳,获得10
33秒前
Owen应助科研通管家采纳,获得10
33秒前
研友_VZG7GZ应助科研通管家采纳,获得10
33秒前
隐形曼青应助科研通管家采纳,获得10
33秒前
ding应助科研通管家采纳,获得10
33秒前
华仔应助科研通管家采纳,获得10
33秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240773
求助须知:如何正确求助?哪些是违规求助? 2885503
关于积分的说明 8238845
捐赠科研通 2553913
什么是DOI,文献DOI怎么找? 1382066
科研通“疑难数据库(出版商)”最低求助积分说明 649461
邀请新用户注册赠送积分活动 625079