计算机科学
碳纤维
固碳
碳捕获和储存(时间表)
环境科学
废物管理
工程类
化学
气候变化
地质学
复合数
算法
有机化学
海洋学
二氧化碳
作者
Eslam G. Al-Sakkari,Ahmed Ragab,Hanane Dagdougui,Daria C. Boffito,Mouloud Amazouz
标识
DOI:10.1016/j.scitotenv.2024.170085
摘要
Carbon capture, utilization, and sequestration (CCUS) is a promising solution to decarbonize the energy and industrial sectors to mitigate climate change. An integrated assessment of technological options is required for the effective deployment of CCUS large-scale infrastructure between CO2 production and utilization/sequestration nodes. However, developing cost-effective strategies from engineering and operation perspectives to implement CCUS is challenging. This is due to the diversity of upstream emitting processes located in different geographical areas, available downstream utilization technologies, storage sites capacity/location, and current/future energy/emissions/economic conditions. This paper identifies the need to achieve a robust hybrid assessment tool for CCUS modeling, simulation, and optimization based mainly on artificial intelligence (AI) combined with mechanistic methods. Thus, a critical literature review is conducted to assess CCUS technologies and their related process modeling/simulation/optimization techniques, while evaluating the needs for improvements or new developments to reduce overall CCUS systems design and operation costs. These techniques include first principles- based and data-driven ones, i.e. AI and related machine learning (ML) methods. Besides, the paper gives an overview on the role of life cycle assessment (LCA) to evaluate CCUS systems where the combined LCA-AI approach is assessed. Other advanced methods based on the AI/ML capabilities/algorithms can be developed to optimize the whole CCUS value chain. Interpretable ML combined with explainable AI can accelerate optimum materials selection by giving strong rules which accelerates the design of capture/utilization plants afterwards. Besides, deep reinforcement learning (DRL) coupled with process simulations will accelerate process design/operation optimization through considering simultaneous optimization of equipment sizing and operating conditions. Moreover, generative deep learning (GDL) is a key solution to optimum capture/utilization materials design/discovery. The developed AI methods can be generalizable where the extracted knowledge can be transferred to future works to help cutting the costs of CCUS value chain.
科研通智能强力驱动
Strongly Powered by AbleSci AI