A novel multi-exposure fusion-induced stripe inpainting method for blade reflection-encoded images

修补 刀(考古) 反射(计算机编程) 人工智能 融合 计算机视觉 图像融合 计算机科学 材料科学 工程类 图像(数学) 机械工程 哲学 语言学 程序设计语言
作者
Kechen Song,Tianle Zhang,Chongyan Sun,Xin Wen,Yunhui Yan
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:60: 102376-102376
标识
DOI:10.1016/j.aei.2024.102376
摘要

The poor reflection of aircraft engine blades often leads to the loss of structured light encoded stripes on the surface, which affects the accuracy of the reconstructed 3D point cloud. Advanced multi-exposure fusion methods are not suitable for situations where stripes are severely missing. A new scheme for multi-exposure image fusion and image inpainting based on deep learning is proposed to address the above issues. Firstly, we propose an engine blade stripe image inpainting dataset (EBS-II). Secondly, for damaged blade stripe images generated by multi-exposure fusion networks, we designed a two-stage generation network based on edge discrimination guidance (TGEDG-Net) to recover the damaged areas in the image. The generator uses a progressive repair network to gradually recover missing structural and texture information, and the discriminator combines edge prior information to improve the ability to distinguish stripe edges and blade structural features. In addition, the network model has been extended to an interactive system that allows users to draw free masks to guide the network in targeting areas where reflections and stripes are missing in the actual scanned image sequence. The experimental results show that the proposed fringe image inpainting method is progressiveness. Meanwhile, the generated high-precision point cloud model verifies the effectiveness and practicality of the proposed scheme. Our dataset and code can be obtained at the following website: https://github.com/VDT-2048/TGEDG-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助SCI采纳,获得10
1秒前
老疯智发布了新的文献求助10
1秒前
sweetbearm应助通~采纳,获得10
1秒前
神凰完成签到,获得积分10
1秒前
Z小姐发布了新的文献求助10
2秒前
NexusExplorer应助白泽采纳,获得10
2秒前
3秒前
3秒前
火星上妙梦完成签到 ,获得积分10
3秒前
赘婿应助mayungui采纳,获得10
3秒前
贾不可发布了新的文献求助10
4秒前
英俊梦槐发布了新的文献求助30
4秒前
Xu完成签到,获得积分10
5秒前
5秒前
秀丽千山完成签到,获得积分10
5秒前
6秒前
7秒前
哈哈哈哈完成签到,获得积分10
7秒前
沧海泪发布了新的文献求助10
8秒前
小胡先森应助凤凰山采纳,获得10
8秒前
一一完成签到,获得积分10
8秒前
惠惠发布了新的文献求助10
8秒前
shotgod完成签到,获得积分20
9秒前
科研通AI5应助蕾子采纳,获得10
9秒前
happy杨完成签到 ,获得积分10
9秒前
lichaoyes发布了新的文献求助10
9秒前
9秒前
Owen应助通~采纳,获得10
9秒前
封闭货车发布了新的文献求助10
10秒前
10秒前
www发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
12秒前
shotgod发布了新的文献求助10
12秒前
ling玲完成签到,获得积分10
12秒前
奔奔发布了新的文献求助10
12秒前
SweepingMonk应助虚心盼晴采纳,获得10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794