Improving time-series InSAR deformation estimation for city clusters by deep learning-based atmospheric delay correction

干涉合成孔径雷达 遥感 合成孔径雷达 卫星 大地测量学 环境科学 地质学 计算机科学 工程类 航空航天工程
作者
Peifeng Ma,Chang Yeon Yu,Zhe Jiao,Yi Zheng,Zherong Wu,Wenfei Mao,Hui Lin
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:304: 114004-114004 被引量:1
标识
DOI:10.1016/j.rse.2024.114004
摘要

Atmospheric delay (AD) is the main source of error in time-series interferometric synthetic aperture radar (InSAR) deformation estimation over large areas. In this study, we propose a bidirectional gated recurrent unit (BiGRU) model to correct random and seasonal ADs adaptively. The BiGRU model decomposes InSAR time-series measurements into non-seasonal and seasonal components by adopting a branched network structure and extracting component-wise features separately. To remove seasonal ADs and meanwhile preserve true seasonal deformation, a dense and fully connected layer with weighted feature learning was designed. Five typical time-series deformation patterns were simulated for model training, and its robustness was evaluated using synthetic data. We applied the trained model to two city clusters in China (Guangdong and Jiangxi-Hunan) using 178 Sentinle-1 images. The results showed that BiGRU with moderate Generic Atmospheric Correction Online Service (GACOS) and spatiotemporal filtering (pGA_Fi_BiGRU) reduced the standard deviation of InSAR time-series measurements by 64.3% in the Guangdong region and by 53.5% in the Jiangxi-Hunan region compared with the raw data. Compared with the traditional combined GACOS and spatiotemporal filtering processing methods, the pGA_Fi_BiGRU improved the AD reduction performance by 4.7% and by 8.5% in Guangdong and Jiangxi-Hunan, respectively. The InSAR time-series deformation after pGA_Fi_BiGRU processing removed residual ADs and preserved true deformation, which agreed well with the geodetic leveling and Global Navigation Satellite System data. The first overall subsidence velocity of the Irrawaddy Delta city cluster in Myanmar was then mapped, followed by time-series deformation estimation using pGA_Fi_BiGRU. Representative time-series deformation due to groundwater extraction, coastal erosion, and accretion were properly derived, suggesting that the proposed model can be generalized to other city clusters with different atmospheric noise and geophysical dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨本呦完成签到 ,获得积分10
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
1秒前
1秒前
槐20完成签到 ,获得积分10
1秒前
萝卜仔完成签到 ,获得积分10
1秒前
热心的匕完成签到 ,获得积分10
1秒前
我不是很帅完成签到,获得积分10
2秒前
元芳发布了新的文献求助10
2秒前
scdd完成签到 ,获得积分10
2秒前
Lialia完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
gwh完成签到 ,获得积分10
2秒前
背后白梦发布了新的文献求助10
3秒前
mumu完成签到,获得积分10
4秒前
crazy完成签到 ,获得积分10
4秒前
Wangyingjie5完成签到 ,获得积分10
4秒前
YH完成签到 ,获得积分10
4秒前
满堂花醉三千客完成签到 ,获得积分10
5秒前
5秒前
脑洞疼应助斯文吐司采纳,获得10
5秒前
沈臻发布了新的文献求助10
5秒前
5秒前
应俊完成签到 ,获得积分10
6秒前
橙子皮完成签到 ,获得积分10
6秒前
虎妞完成签到 ,获得积分10
6秒前
梧桐的灯完成签到 ,获得积分10
7秒前
言音完成签到 ,获得积分10
8秒前
生动丹珍完成签到 ,获得积分10
8秒前
SciGPT应助Docsiwen采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
haha完成签到 ,获得积分10
9秒前
蔚蓝完成签到 ,获得积分10
9秒前
霜序完成签到,获得积分20
10秒前
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662278
求助须知:如何正确求助?哪些是违规求助? 3223084
关于积分的说明 9750065
捐赠科研通 2932888
什么是DOI,文献DOI怎么找? 1605851
邀请新用户注册赠送积分活动 758174
科研通“疑难数据库(出版商)”最低求助积分说明 734727