An optimized fuzzy K-means clustering method for automated rock discontinuities extraction from point clouds

聚类分析 不连续性分类 点云 模糊聚类 计算机科学 数据挖掘 间断(语言学) 模糊逻辑 点(几何) 算法 人工智能 数学 数学分析 几何学
作者
Jia‐wen Zhou,Jun-lin Chen,Haibo Li
出处
期刊:International Journal of Rock Mechanics and Mining Sciences [Elsevier]
卷期号:173: 105627-105627 被引量:4
标识
DOI:10.1016/j.ijrmms.2023.105627
摘要

Recently, non-contact measurement methods such as laser scanning, have gained popularity in collecting discontinuous data due to their ability to generate high-resolution point clouds containing detailed information about rock surface. However, quickly and accurately extracting discontinuities from massive point clouds faces challenges. In this study, we propose an optimization algorithm based on fuzzy clustering and region growth that enables swift extraction of discontinuity information from point clouds. The proposed method employed a composite indicator to evaluate the similarity and dissimilarity of the points in a clustering group basing on the membership function matrix and the optimal clustering number could be estimated without predefining. Additionally, region growing is difficult to deal with increasingly enormous point clouds, a faster way is estimating a possible range as a search radius to avoid meaningless time-consuming in region growing. Further, the proposed methodology was implemented in Matlab to extract discontinuities from high-resolution point cloud, includes data pre-processing, optimized fuzzy clustering, and optimized region growing. Finally, particular attention was given to the sensitivity of automatic extraction in point cloud resolution and cluster number, these parameters are always special in different objects. The results showed that the optimized method performed excellent in clustering without a priori assumption of cluster number, and provided optional range of resolutions without losses of accuracy to cater to diverse requirements. The proposed method gave a new way to estimate the optimal clustering number as same as manually separated without predefining, to collect all orientations of discontinuity quickly, and to meet different needs with appropriate resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
默默的鱼丸完成签到,获得积分10
1秒前
山月发布了新的文献求助10
2秒前
虚心的宛亦完成签到,获得积分10
2秒前
2秒前
2秒前
Zhushijue关注了科研通微信公众号
3秒前
安东发布了新的文献求助30
4秒前
7秒前
8秒前
Z1070741749完成签到,获得积分10
8秒前
舒心小猫咪完成签到 ,获得积分10
8秒前
啦啦啦完成签到,获得积分10
10秒前
11秒前
姝_发布了新的文献求助10
11秒前
周芷卉完成签到 ,获得积分10
11秒前
12秒前
13秒前
小西发布了新的文献求助10
14秒前
14秒前
thy完成签到 ,获得积分10
14秒前
14秒前
Xing发布了新的文献求助10
16秒前
16秒前
lyz666发布了新的文献求助10
16秒前
17秒前
张怡发布了新的文献求助10
17秒前
周凡淇发布了新的文献求助10
17秒前
科目三应助wang采纳,获得10
19秒前
19秒前
19秒前
丘比特应助zzy采纳,获得10
20秒前
少年发布了新的文献求助10
21秒前
21秒前
Akim应助hhhh采纳,获得10
23秒前
23秒前
今后应助靓丽的溪灵采纳,获得10
23秒前
WEIDERR发布了新的文献求助10
23秒前
科研通AI2S应助香菜味钠片采纳,获得10
23秒前
23秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124803
求助须知:如何正确求助?哪些是违规求助? 2775148
关于积分的说明 7725553
捐赠科研通 2430633
什么是DOI,文献DOI怎么找? 1291291
科研通“疑难数据库(出版商)”最低求助积分说明 622121
版权声明 600328