BINDTI: A bi-directional Intention network for drug-target interaction identification based on attention mechanisms

药物数据库 鉴定(生物学) 计算机科学 图形 药物发现 可视化 化学信息学 机器学习 注意力网络 卷积神经网络 药物靶点 模式识别(心理学) 人工智能 药品 生物信息学 理论计算机科学 医学 生物 药理学 精神科 植物
作者
Lihong Peng,Xin Liu,Yang Long,Longlong Liu,Zongzheng Bai,Min Chen,Xu Lu,Libo Nie
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:16
标识
DOI:10.1109/jbhi.2024.3375025
摘要

The identification of drug-target interactions (DTIs) is an essential step in drug discovery. In vitro experimental methods are expensive, laborious, and time-consuming. Deep learning has witnessed promising progress in DTI prediction. However, how to precisely represent drug and protein features is a major challenge for DTI prediction. Here, we developed an end-to-end DTI identification framework called BINDTI based on bi-directional Intention network. First, drug features are encoded with graph convolutional networks based on its 2D molecular graph obtained by its SMILES string. Next, protein features are encoded based on its amino acid sequence through a mixed model called ACmix, which integrates self-attention mechanism and convolution. Third, drug and target features are fused through bi-directional Intention network, which combines Intention and multi-head attention. Finally, unknown drug-target (DT) pairs are classified through multilayer perceptron based on the fused DT features. The results demonstrate that BINDTI greatly outperformed four baseline methods (i.e., CPI-GNN, TransfomerCPI, MolTrans, and IIFDTI) on the BindingDB, BioSNAP, DrugBank, and Human datasets. More importantly, it was more appropriate to predict new DTIs than the four baseline methods on imbalanced datasets. Ablation experimental results elucidated that both bi-directional Intention and ACmix could greatly advance DTI prediction. The fused feature visualization and case studies manifested that the predicted results by BINDTI were basically consistent with the true ones. We anticipate that the proposed BINDTI framework can find new low-cost drug candidates, improve drugs' virtual screening, and further facilitate drug repositioning as well as drug discovery. BINDTI is publicly available at https://github.com/plhhnu/BINDTI .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助lulul采纳,获得10
刚刚
刚刚
陈文文发布了新的文献求助10
刚刚
mirror发布了新的文献求助30
1秒前
斯文败类应助浮熙采纳,获得10
1秒前
晚秋完成签到,获得积分0
2秒前
大勺完成签到 ,获得积分10
3秒前
yy完成签到,获得积分10
4秒前
4秒前
mahaha发布了新的文献求助10
5秒前
一五一十发布了新的文献求助10
5秒前
5秒前
xx完成签到,获得积分10
7秒前
沈呆呆完成签到,获得积分10
7秒前
8秒前
8秒前
Ahha完成签到 ,获得积分10
9秒前
小小狗完成签到,获得积分10
10秒前
10秒前
格格发布了新的文献求助10
10秒前
11秒前
叶思言发布了新的文献求助10
11秒前
11秒前
科研通AI5应助粱如波采纳,获得10
12秒前
Dawn完成签到,获得积分10
12秒前
14秒前
nn发布了新的文献求助10
15秒前
kkx发布了新的文献求助10
15秒前
单纯的逊发布了新的文献求助10
16秒前
幸福的鑫鹏完成签到 ,获得积分10
16秒前
合适友儿完成签到,获得积分10
17秒前
SciGPT应助zhl采纳,获得10
17秒前
希望天下0贩的0应助nn采纳,获得10
18秒前
小程同学完成签到,获得积分10
19秒前
xx发布了新的文献求助10
19秒前
20秒前
陈千发布了新的文献求助10
21秒前
U2完成签到,获得积分10
22秒前
cdercder应助做梦采纳,获得20
22秒前
AlexLam完成签到,获得积分10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281244
关于积分的说明 10023902
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644908
邀请新用户注册赠送积分活动 782421
科研通“疑难数据库(出版商)”最低求助积分说明 749792