亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BINDTI: A bi-directional Intention network for drug-target interaction identification based on attention mechanisms

药物数据库 鉴定(生物学) 计算机科学 图形 药物发现 可视化 化学信息学 机器学习 注意力网络 卷积神经网络 药物靶点 模式识别(心理学) 人工智能 药品 生物信息学 理论计算机科学 医学 生物 药理学 精神科 植物
作者
Lihong Peng,Xin Liu,Yang Long,Longlong Liu,Zongzheng Bai,Min Chen,Xu Lu,Libo Nie
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:6
标识
DOI:10.1109/jbhi.2024.3375025
摘要

The identification of drug-target interactions (DTIs) is an essential step in drug discovery. In vitro experimental methods are expensive, laborious, and time-consuming. Deep learning has witnessed promising progress in DTI prediction. However, how to precisely represent drug and protein features is a major challenge for DTI prediction. Here, we developed an end-to-end DTI identification framework called BINDTI based on bi-directional Intention network. First, drug features are encoded with graph convolutional networks based on its 2D molecular graph obtained by its SMILES string. Next, protein features are encoded based on its amino acid sequence through a mixed model called ACmix, which integrates self-attention mechanism and convolution. Third, drug and target features are fused through bi-directional Intention network, which combines Intention and multi-head attention. Finally, unknown drug-target (DT) pairs are classified through multilayer perceptron based on the fused DT features. The results demonstrate that BINDTI greatly outperformed four baseline methods (i.e., CPI-GNN, TransfomerCPI, MolTrans, and IIFDTI) on the BindingDB, BioSNAP, DrugBank, and Human datasets. More importantly, it was more appropriate to predict new DTIs than the four baseline methods on imbalanced datasets. Ablation experimental results elucidated that both bi-directional Intention and ACmix could greatly advance DTI prediction. The fused feature visualization and case studies manifested that the predicted results by BINDTI were basically consistent with the true ones. We anticipate that the proposed BINDTI framework can find new low-cost drug candidates, improve drugs' virtual screening, and further facilitate drug repositioning as well as drug discovery. BINDTI is publicly available at https://github.com/plhhnu/BINDTI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着夏山发布了新的文献求助10
18秒前
27秒前
uikymh完成签到 ,获得积分0
28秒前
49秒前
李伟发布了新的文献求助10
1分钟前
1分钟前
皎皎完成签到,获得积分10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
cjx完成签到,获得积分10
1分钟前
2分钟前
2分钟前
henrychyeung发布了新的文献求助10
2分钟前
皎皎发布了新的文献求助10
2分钟前
2分钟前
2分钟前
包佳梁完成签到,获得积分10
3分钟前
henrychyeung完成签到,获得积分10
3分钟前
3分钟前
3分钟前
筱灬发布了新的文献求助10
3分钟前
4分钟前
狂野乌冬面完成签到 ,获得积分10
4分钟前
桐桐应助jjjjjj采纳,获得10
4分钟前
5分钟前
太叔夜南发布了新的文献求助10
5分钟前
太叔夜南完成签到,获得积分10
5分钟前
5分钟前
6分钟前
李剑鸿发布了新的文献求助200
6分钟前
炫哥IRIS完成签到,获得积分10
6分钟前
斯文败类应助执着夏山采纳,获得10
6分钟前
爆米花应助炫哥IRIS采纳,获得10
6分钟前
Hello应助执着夏山采纳,获得10
6分钟前
充电宝应助科研通管家采纳,获得10
7分钟前
7分钟前
执着夏山发布了新的文献求助10
7分钟前
7分钟前
jjjjjj发布了新的文献求助10
7分钟前
8分钟前
执着夏山发布了新的文献求助10
8分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146739
求助须知:如何正确求助?哪些是违规求助? 2798045
关于积分的说明 7826576
捐赠科研通 2454566
什么是DOI,文献DOI怎么找? 1306391
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527