Enhanced Detection of Syringe Defects Based on an Improved YOLOv7-Tiny Deep-Learning Model

注射器 深度学习 人工智能 计算机科学 心理学 精神科
作者
Wenxuan Zhao,Ling Wang,Chentao Mao,Xiai Chen,Yanfeng Gao,Binrui Wang
出处
期刊:Journal of Medical Devices-transactions of The Asme [ASME International]
卷期号:18 (1)
标识
DOI:10.1115/1.4065355
摘要

Abstract The timely and accurate identification of syringe defects plays a key role in effectively improving product quality in production lines of syringes. In this article, we collected a dataset of image samples representing five common types of syringe defects found on the production line. The dataset comprises over 5000 images, with an average of three different syringe defects per image. Based on this dataset, we designed a syringe defect detection model based on an improved You Only Look Once Version 7 (YOLOv7)-Tiny proposed in this paper. The model combines the Res-PAN structure, the ACmix mixed attention mechanism, the FReLU activation function, and the SIoU loss function. The comparative experiments are conducted on the self-built dataset SYR-Dat to evaluate the performance of the proposed syringe defect detection model. The average precision of the model reaches 94.1%. To ensure the effectiveness of the model, it is compared with other models, including SSD300, Faster R-CNN, EfficientDet, RetinaNet, YOLOv5s, YOLOv6, and YOLOv7. The results demonstrate that the proposed improved YOLOv7-Tiny model can better capture the features of syringe defects. Furthermore, the generalization of the improved YOLOv7-Tiny model is validated on the VOC2012 dataset. The results indicate that the improved model continues to outperform the baseline models. The proposed syringe defect detection model shows promising application prospects, as it can reduce the rate of defective products and improve product quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阔达语儿发布了新的文献求助10
1秒前
赘婿应助多多采纳,获得10
1秒前
1秒前
李心茹完成签到,获得积分10
1秒前
夏惋清完成签到 ,获得积分0
2秒前
Mikeychen完成签到,获得积分10
2秒前
3秒前
白杨木影子被拉长完成签到,获得积分10
3秒前
4秒前
4秒前
suki发布了新的文献求助10
4秒前
畅快傲松发布了新的文献求助10
4秒前
丘比特应助雷寒云采纳,获得10
4秒前
jelly10应助孤独的冰彤采纳,获得10
5秒前
jelly10应助孤独的冰彤采纳,获得10
5秒前
6秒前
6秒前
科研通AI5应助妙蛙采纳,获得10
6秒前
安详的琳完成签到 ,获得积分10
7秒前
7秒前
橙子发布了新的文献求助10
7秒前
饼干完成签到 ,获得积分10
7秒前
擎苍发布了新的文献求助30
7秒前
开朗的寻桃完成签到,获得积分10
7秒前
Dr大壮发布了新的文献求助10
8秒前
kangkang发布了新的文献求助10
9秒前
meizu发布了新的文献求助10
9秒前
小二郎应助WangXiaoze采纳,获得10
9秒前
自由颖发布了新的文献求助20
9秒前
LQH发布了新的文献求助10
10秒前
阿梓发布了新的文献求助10
10秒前
10秒前
酷炫书包完成签到,获得积分20
10秒前
好运接收集成器完成签到,获得积分10
11秒前
高大曼香发布了新的文献求助10
12秒前
sxmt123456789完成签到,获得积分10
12秒前
英姑应助加点研采纳,获得10
12秒前
Yx完成签到,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5251905
求助须知:如何正确求助?哪些是违规求助? 4415834
关于积分的说明 13747630
捐赠科研通 4287647
什么是DOI,文献DOI怎么找? 2352548
邀请新用户注册赠送积分活动 1349348
关于科研通互助平台的介绍 1308876