Enhanced Detection of Syringe Defects Based on an Improved YOLOv7-Tiny Deep-Learning Model

注射器 深度学习 人工智能 计算机科学 心理学 精神科
作者
Wenxuan Zhao,Ling Wang,Chentao Mao,Xiai Chen,Yanfeng Gao,Binrui Wang
出处
期刊:Journal of Medical Devices-transactions of The Asme [ASME International]
卷期号:18 (1)
标识
DOI:10.1115/1.4065355
摘要

Abstract The timely and accurate identification of syringe defects plays a key role in effectively improving product quality in production lines of syringes. In this article, we collected a dataset of image samples representing five common types of syringe defects found on the production line. The dataset comprises over 5000 images, with an average of three different syringe defects per image. Based on this dataset, we designed a syringe defect detection model based on an improved You Only Look Once Version 7 (YOLOv7)-Tiny proposed in this paper. The model combines the Res-PAN structure, the ACmix mixed attention mechanism, the FReLU activation function, and the SIoU loss function. The comparative experiments are conducted on the self-built dataset SYR-Dat to evaluate the performance of the proposed syringe defect detection model. The average precision of the model reaches 94.1%. To ensure the effectiveness of the model, it is compared with other models, including SSD300, Faster R-CNN, EfficientDet, RetinaNet, YOLOv5s, YOLOv6, and YOLOv7. The results demonstrate that the proposed improved YOLOv7-Tiny model can better capture the features of syringe defects. Furthermore, the generalization of the improved YOLOv7-Tiny model is validated on the VOC2012 dataset. The results indicate that the improved model continues to outperform the baseline models. The proposed syringe defect detection model shows promising application prospects, as it can reduce the rate of defective products and improve product quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JamesPei应助白华苍松采纳,获得10
1秒前
wangn发布了新的文献求助10
1秒前
挽歌发布了新的文献求助10
1秒前
1秒前
Zhang发布了新的文献求助10
1秒前
Owen应助jogrgr采纳,获得10
1秒前
wjw关闭了wjw文献求助
1秒前
2秒前
2秒前
2秒前
2秒前
Ava应助侦察兵采纳,获得10
3秒前
3秒前
rookie_b0发布了新的文献求助10
3秒前
邓代容完成签到 ,获得积分10
4秒前
可爱的函函应助南逸然采纳,获得10
4秒前
HiK完成签到,获得积分10
4秒前
gaos发布了新的文献求助10
4秒前
5秒前
外向从灵发布了新的文献求助10
5秒前
5秒前
萌道完成签到,获得积分20
6秒前
thanhmanhp完成签到,获得积分10
6秒前
doudou发布了新的文献求助10
6秒前
6秒前
有风完成签到,获得积分10
6秒前
tk完成签到 ,获得积分10
7秒前
7秒前
大模型应助蜡笔采纳,获得30
7秒前
liu发布了新的文献求助10
7秒前
完美世界应助咳咳采纳,获得10
8秒前
8秒前
哒哒完成签到,获得积分10
8秒前
李健春完成签到 ,获得积分10
8秒前
ding应助小文采纳,获得10
8秒前
8秒前
9秒前
99完成签到,获得积分10
9秒前
隐形曼青应助迅速的夏兰采纳,获得20
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759