Enhanced Detection of Syringe Defects Based on an Improved YOLOv7-Tiny Deep-Learning Model

注射器 深度学习 人工智能 计算机科学 心理学 精神科
作者
Wenxuan Zhao,Ling Wang,Chentao Mao,Xiai Chen,Yanfeng Gao,Binrui Wang
出处
期刊:Journal of Medical Devices-transactions of The Asme [ASME International]
卷期号:18 (1)
标识
DOI:10.1115/1.4065355
摘要

Abstract The timely and accurate identification of syringe defects plays a key role in effectively improving product quality in production lines of syringes. In this article, we collected a dataset of image samples representing five common types of syringe defects found on the production line. The dataset comprises over 5000 images, with an average of three different syringe defects per image. Based on this dataset, we designed a syringe defect detection model based on an improved You Only Look Once Version 7 (YOLOv7)-Tiny proposed in this paper. The model combines the Res-PAN structure, the ACmix mixed attention mechanism, the FReLU activation function, and the SIoU loss function. The comparative experiments are conducted on the self-built dataset SYR-Dat to evaluate the performance of the proposed syringe defect detection model. The average precision of the model reaches 94.1%. To ensure the effectiveness of the model, it is compared with other models, including SSD300, Faster R-CNN, EfficientDet, RetinaNet, YOLOv5s, YOLOv6, and YOLOv7. The results demonstrate that the proposed improved YOLOv7-Tiny model can better capture the features of syringe defects. Furthermore, the generalization of the improved YOLOv7-Tiny model is validated on the VOC2012 dataset. The results indicate that the improved model continues to outperform the baseline models. The proposed syringe defect detection model shows promising application prospects, as it can reduce the rate of defective products and improve product quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
舒心谷雪完成签到 ,获得积分10
2秒前
lll完成签到,获得积分20
2秒前
4秒前
FashionBoy应助威武忆山采纳,获得10
5秒前
SciGPT应助谨慎不二采纳,获得10
6秒前
7秒前
hwq123完成签到,获得积分10
10秒前
10秒前
领导范儿应助upon采纳,获得10
11秒前
11秒前
sa完成签到 ,获得积分10
12秒前
100个圈完成签到,获得积分10
12秒前
TTT发布了新的文献求助10
12秒前
13秒前
山鱼人发布了新的文献求助30
14秒前
日月轮回发布了新的文献求助30
15秒前
雨后彩虹伤完成签到,获得积分10
18秒前
英俊的铭应助hxnz2001采纳,获得10
22秒前
谨慎不二发布了新的文献求助50
23秒前
lumengning发布了新的文献求助10
25秒前
wonhui发布了新的文献求助10
26秒前
26秒前
28秒前
山鱼人完成签到,获得积分10
28秒前
kitten发布了新的文献求助10
32秒前
威武忆山发布了新的文献求助10
32秒前
无花果应助一叶知秋采纳,获得10
33秒前
34秒前
ns完成签到,获得积分10
34秒前
不配.应助眼泪成诗采纳,获得20
36秒前
lumengning完成签到,获得积分10
37秒前
迷你的颖完成签到,获得积分10
37秒前
二号发布了新的文献求助10
38秒前
41秒前
爱撒娇的鱼应助wenxiang采纳,获得10
42秒前
Jasper应助二号采纳,获得10
44秒前
kitten完成签到,获得积分10
46秒前
一叶知秋发布了新的文献求助10
47秒前
酷波er应助史塔克采纳,获得10
48秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138641
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791857
捐赠科研通 2445999
什么是DOI,文献DOI怎么找? 1300813
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079