亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhanced Detection of Syringe Defects Based on an Improved YOLOv7-Tiny Deep-Learning Model

注射器 深度学习 人工智能 计算机科学 心理学 精神科
作者
Wenxuan Zhao,Ling Wang,Chentao Mao,Xiai Chen,Yanfeng Gao,Binrui Wang
出处
期刊:Journal of Medical Devices-transactions of The Asme [ASM International]
卷期号:18 (1)
标识
DOI:10.1115/1.4065355
摘要

Abstract The timely and accurate identification of syringe defects plays a key role in effectively improving product quality in production lines of syringes. In this article, we collected a dataset of image samples representing five common types of syringe defects found on the production line. The dataset comprises over 5000 images, with an average of three different syringe defects per image. Based on this dataset, we designed a syringe defect detection model based on an improved You Only Look Once Version 7 (YOLOv7)-Tiny proposed in this paper. The model combines the Res-PAN structure, the ACmix mixed attention mechanism, the FReLU activation function, and the SIoU loss function. The comparative experiments are conducted on the self-built dataset SYR-Dat to evaluate the performance of the proposed syringe defect detection model. The average precision of the model reaches 94.1%. To ensure the effectiveness of the model, it is compared with other models, including SSD300, Faster R-CNN, EfficientDet, RetinaNet, YOLOv5s, YOLOv6, and YOLOv7. The results demonstrate that the proposed improved YOLOv7-Tiny model can better capture the features of syringe defects. Furthermore, the generalization of the improved YOLOv7-Tiny model is validated on the VOC2012 dataset. The results indicate that the improved model continues to outperform the baseline models. The proposed syringe defect detection model shows promising application prospects, as it can reduce the rate of defective products and improve product quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松的惜芹应助linkman采纳,获得10
1秒前
慕青应助我爱物理采纳,获得10
4秒前
4秒前
充电宝应助霜鸣采纳,获得10
6秒前
7秒前
隐形曼青应助伽拉采纳,获得10
8秒前
hhw完成签到,获得积分10
8秒前
咕噜噜发布了新的文献求助10
10秒前
13秒前
14秒前
研友_qZ6V1Z发布了新的文献求助10
15秒前
涨秋池发布了新的文献求助10
16秒前
燕子完成签到 ,获得积分10
16秒前
16秒前
nicenice发布了新的文献求助10
18秒前
18秒前
yx_cheng应助linkman采纳,获得10
21秒前
22秒前
Bowman发布了新的文献求助30
22秒前
Anthonywll完成签到 ,获得积分10
31秒前
壮观的海豚完成签到 ,获得积分10
34秒前
慕青应助喂喂采纳,获得10
35秒前
zx完成签到 ,获得积分10
37秒前
guozao发布了新的文献求助10
39秒前
咖啡龙完成签到,获得积分20
39秒前
yx_cheng应助linkman采纳,获得10
41秒前
44秒前
ET完成签到,获得积分10
45秒前
完美世界应助towerman采纳,获得10
51秒前
hi_traffic完成签到,获得积分10
56秒前
56秒前
HXY完成签到,获得积分10
58秒前
59秒前
59秒前
1分钟前
领导范儿应助linkman采纳,获得30
1分钟前
eric888应助guozao采纳,获得150
1分钟前
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
towerman完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990012
求助须知:如何正确求助?哪些是违规求助? 3532049
关于积分的说明 11256153
捐赠科研通 3270925
什么是DOI,文献DOI怎么找? 1805123
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216