Development and validation of a new algorithm for improved cardiovascular risk prediction

医学 弗雷明翰风险评分 置信区间 疾病 肺癌 风险评估 内科学 计算机科学 计算机安全
作者
Julia Hippisley‐Cox,Carol Coupland,Mona Bafadhel,Richard Russell,Aziz Sheikh,Peter Brindle,Keith M. Channon
出处
期刊:Nature Medicine [Springer Nature]
卷期号:30 (5): 1440-1447 被引量:11
标识
DOI:10.1038/s41591-024-02905-y
摘要

Abstract QRISK algorithms use data from millions of people to help clinicians identify individuals at high risk of cardiovascular disease (CVD). Here, we derive and externally validate a new algorithm, which we have named QR4, that incorporates novel risk factors to estimate 10-year CVD risk separately for men and women. Health data from 9.98 million and 6.79 million adults from the United Kingdom were used for derivation and validation of the algorithm, respectively. Cause-specific Cox models were used to develop models to predict CVD risk, and the performance of QR4 was compared with version 3 of QRISK, Systematic Coronary Risk Evaluation 2 (SCORE2) and atherosclerotic cardiovascular disease (ASCVD) risk scores. We identified seven novel risk factors in models for both men and women (brain cancer, lung cancer, Down syndrome, blood cancer, chronic obstructive pulmonary disease, oral cancer and learning disability) and two additional novel risk factors in women (pre-eclampsia and postnatal depression). On external validation, QR4 had a higher C statistic than QRISK3 in both women (0.835 (95% confidence interval (CI), 0.833–0.837) and 0.831 (95% CI, 0.829–0.832) for QR4 and QRISK3, respectively) and men (0.814 (95% CI, 0.812–0.816) and 0.812 (95% CI, 0.810–0.814) for QR4 and QRISK3, respectively). QR4 was also more accurate than the ASCVD and SCORE2 risk scores in both men and women. The QR4 risk score identifies new risk groups and provides superior CVD risk prediction in the United Kingdom compared with other international scoring systems for CVD risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今天也要开心Y完成签到,获得积分10
刚刚
刚刚
Cassie发布了新的文献求助10
刚刚
asda发布了新的文献求助10
1秒前
王则华完成签到,获得积分10
2秒前
zyy发布了新的文献求助10
2秒前
2秒前
如意厉完成签到,获得积分10
3秒前
3秒前
大个应助魏映霞采纳,获得10
3秒前
Llllllllily应助欣喜十八采纳,获得10
4秒前
AN发布了新的文献求助30
4秒前
4秒前
1526完成签到,获得积分10
4秒前
vv发布了新的文献求助10
4秒前
酷波er应助花根采纳,获得10
5秒前
今后应助花根采纳,获得10
5秒前
明明完成签到,获得积分10
5秒前
西红柿发布了新的文献求助10
5秒前
DearJulie完成签到,获得积分20
5秒前
qinshimigyue完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
完美问玉完成签到,获得积分10
7秒前
huangyulin66发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
wh完成签到 ,获得积分10
9秒前
丘比特应助宋佳采纳,获得10
9秒前
soso发布了新的文献求助10
9秒前
王嵩嵩完成签到,获得积分10
9秒前
9秒前
kiana发布了新的文献求助10
10秒前
wangruize完成签到,获得积分10
11秒前
11秒前
11秒前
蓦然回首完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809