Development and validation of a new algorithm for improved cardiovascular risk prediction

医学 弗雷明翰风险评分 置信区间 疾病 肺癌 风险评估 内科学 计算机科学 计算机安全
作者
Julia Hippisley‐Cox,Carol Coupland,Mona Bafadhel,Richard Russell,Aziz Sheikh,Peter Brindle,Keith M. Channon
出处
期刊:Nature Medicine [Springer Nature]
卷期号:30 (5): 1440-1447 被引量:11
标识
DOI:10.1038/s41591-024-02905-y
摘要

Abstract QRISK algorithms use data from millions of people to help clinicians identify individuals at high risk of cardiovascular disease (CVD). Here, we derive and externally validate a new algorithm, which we have named QR4, that incorporates novel risk factors to estimate 10-year CVD risk separately for men and women. Health data from 9.98 million and 6.79 million adults from the United Kingdom were used for derivation and validation of the algorithm, respectively. Cause-specific Cox models were used to develop models to predict CVD risk, and the performance of QR4 was compared with version 3 of QRISK, Systematic Coronary Risk Evaluation 2 (SCORE2) and atherosclerotic cardiovascular disease (ASCVD) risk scores. We identified seven novel risk factors in models for both men and women (brain cancer, lung cancer, Down syndrome, blood cancer, chronic obstructive pulmonary disease, oral cancer and learning disability) and two additional novel risk factors in women (pre-eclampsia and postnatal depression). On external validation, QR4 had a higher C statistic than QRISK3 in both women (0.835 (95% confidence interval (CI), 0.833–0.837) and 0.831 (95% CI, 0.829–0.832) for QR4 and QRISK3, respectively) and men (0.814 (95% CI, 0.812–0.816) and 0.812 (95% CI, 0.810–0.814) for QR4 and QRISK3, respectively). QR4 was also more accurate than the ASCVD and SCORE2 risk scores in both men and women. The QR4 risk score identifies new risk groups and provides superior CVD risk prediction in the United Kingdom compared with other international scoring systems for CVD risk.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
嘿嘿应助小高采纳,获得10
2秒前
cc完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
Zoe完成签到,获得积分10
5秒前
舒苏应助ABCDE采纳,获得30
7秒前
8秒前
慧子完成签到,获得积分10
8秒前
小二郎应助家夜雪采纳,获得10
8秒前
shiiiny发布了新的文献求助10
8秒前
合适白猫完成签到,获得积分10
9秒前
BowieHuang应助元谷雪采纳,获得10
9秒前
薄荷完成签到,获得积分10
9秒前
10秒前
害怕的帽子完成签到 ,获得积分10
10秒前
11秒前
12秒前
寇博翔发布了新的文献求助10
13秒前
烂漫的飞松完成签到,获得积分10
13秒前
苹果冬莲完成签到,获得积分10
13秒前
去心邻域完成签到,获得积分10
14秒前
天地一体完成签到,获得积分10
17秒前
19秒前
梦玲完成签到 ,获得积分10
19秒前
小二郎应助可可奇采纳,获得10
22秒前
23秒前
慕青应助tguczf采纳,获得10
23秒前
24秒前
24秒前
NexusExplorer应助小高采纳,获得10
24秒前
张贵虎完成签到 ,获得积分10
25秒前
李兴完成签到 ,获得积分10
25秒前
26秒前
华仔应助11采纳,获得10
26秒前
研友_VZG7GZ应助竹寺采纳,获得10
26秒前
脑洞疼应助jetwang采纳,获得200
27秒前
28秒前
29秒前
29秒前
清脆的台灯完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604302
求助须知:如何正确求助?哪些是违规求助? 4689045
关于积分的说明 14857600
捐赠科研通 4697314
什么是DOI,文献DOI怎么找? 2541233
邀请新用户注册赠送积分活动 1507355
关于科研通互助平台的介绍 1471867