Development and validation of a new algorithm for improved cardiovascular risk prediction

医学 弗雷明翰风险评分 置信区间 疾病 肺癌 风险评估 内科学 计算机科学 计算机安全
作者
Julia Hippisley‐Cox,Carol Coupland,Mona Bafadhel,Richard Russell,Aziz Sheikh,Peter Brindle,Keith M. Channon
出处
期刊:Nature Medicine [Springer Nature]
卷期号:30 (5): 1440-1447 被引量:11
标识
DOI:10.1038/s41591-024-02905-y
摘要

Abstract QRISK algorithms use data from millions of people to help clinicians identify individuals at high risk of cardiovascular disease (CVD). Here, we derive and externally validate a new algorithm, which we have named QR4, that incorporates novel risk factors to estimate 10-year CVD risk separately for men and women. Health data from 9.98 million and 6.79 million adults from the United Kingdom were used for derivation and validation of the algorithm, respectively. Cause-specific Cox models were used to develop models to predict CVD risk, and the performance of QR4 was compared with version 3 of QRISK, Systematic Coronary Risk Evaluation 2 (SCORE2) and atherosclerotic cardiovascular disease (ASCVD) risk scores. We identified seven novel risk factors in models for both men and women (brain cancer, lung cancer, Down syndrome, blood cancer, chronic obstructive pulmonary disease, oral cancer and learning disability) and two additional novel risk factors in women (pre-eclampsia and postnatal depression). On external validation, QR4 had a higher C statistic than QRISK3 in both women (0.835 (95% confidence interval (CI), 0.833–0.837) and 0.831 (95% CI, 0.829–0.832) for QR4 and QRISK3, respectively) and men (0.814 (95% CI, 0.812–0.816) and 0.812 (95% CI, 0.810–0.814) for QR4 and QRISK3, respectively). QR4 was also more accurate than the ASCVD and SCORE2 risk scores in both men and women. The QR4 risk score identifies new risk groups and provides superior CVD risk prediction in the United Kingdom compared with other international scoring systems for CVD risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
687完成签到,获得积分10
3秒前
领导范儿应助Yeshenyue采纳,获得10
4秒前
wifi发布了新的文献求助10
4秒前
5秒前
5秒前
7秒前
7秒前
脑洞疼应助HH采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
无花果应助凸迩丝儿采纳,获得10
10秒前
善学以致用应助钱罐罐采纳,获得10
10秒前
大人发布了新的文献求助10
11秒前
11秒前
余晶晶发布了新的文献求助10
12秒前
甜甜青旋发布了新的文献求助10
12秒前
深情安青应助危机的芝麻采纳,获得10
13秒前
小夜发布了新的文献求助10
13秒前
王昕钥完成签到,获得积分10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
14秒前
彭于晏应助科研通管家采纳,获得30
14秒前
Orange应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
kentonchow应助科研通管家采纳,获得10
14秒前
kentonchow应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
小杭76应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
16秒前
16秒前
Orange应助可爱的豆芽采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5399809
求助须知:如何正确求助?哪些是违规求助? 4519252
关于积分的说明 14074229
捐赠科研通 4432023
什么是DOI,文献DOI怎么找? 2433408
邀请新用户注册赠送积分活动 1425754
关于科研通互助平台的介绍 1404500