Development and validation of a new algorithm for improved cardiovascular risk prediction

医学 弗雷明翰风险评分 置信区间 疾病 肺癌 风险评估 内科学 计算机科学 计算机安全
作者
Julia Hippisley‐Cox,Carol Coupland,Mona Bafadhel,Richard Russell,Aziz Sheikh,Peter Brindle,Keith M. Channon
出处
期刊:Nature Medicine [Springer Nature]
标识
DOI:10.1038/s41591-024-02905-y
摘要

Abstract QRISK algorithms use data from millions of people to help clinicians identify individuals at high risk of cardiovascular disease (CVD). Here, we derive and externally validate a new algorithm, which we have named QR4, that incorporates novel risk factors to estimate 10-year CVD risk separately for men and women. Health data from 9.98 million and 6.79 million adults from the United Kingdom were used for derivation and validation of the algorithm, respectively. Cause-specific Cox models were used to develop models to predict CVD risk, and the performance of QR4 was compared with version 3 of QRISK, Systematic Coronary Risk Evaluation 2 (SCORE2) and atherosclerotic cardiovascular disease (ASCVD) risk scores. We identified seven novel risk factors in models for both men and women (brain cancer, lung cancer, Down syndrome, blood cancer, chronic obstructive pulmonary disease, oral cancer and learning disability) and two additional novel risk factors in women (pre-eclampsia and postnatal depression). On external validation, QR4 had a higher C statistic than QRISK3 in both women (0.835 (95% confidence interval (CI), 0.833–0.837) and 0.831 (95% CI, 0.829–0.832) for QR4 and QRISK3, respectively) and men (0.814 (95% CI, 0.812–0.816) and 0.812 (95% CI, 0.810–0.814) for QR4 and QRISK3, respectively). QR4 was also more accurate than the ASCVD and SCORE2 risk scores in both men and women. The QR4 risk score identifies new risk groups and provides superior CVD risk prediction in the United Kingdom compared with other international scoring systems for CVD risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁一发布了新的文献求助10
刚刚
zxx完成签到 ,获得积分10
刚刚
1秒前
叶博完成签到,获得积分10
1秒前
研友_pnx7JL发布了新的文献求助10
2秒前
曾经枫发布了新的文献求助10
2秒前
2秒前
CodeCraft应助miaomiao采纳,获得10
2秒前
传奇3应助Thomas周采纳,获得10
3秒前
4秒前
俊逸小笼包完成签到,获得积分10
4秒前
firewood完成签到,获得积分10
4秒前
sukiyaki完成签到,获得积分10
4秒前
大模型应助尽我所能采纳,获得10
5秒前
是漏漏呀完成签到 ,获得积分10
5秒前
桐桐应助BWZ采纳,获得10
5秒前
高贵雁开发布了新的文献求助10
5秒前
5秒前
充电宝应助天涯赤子采纳,获得10
5秒前
Xiaoyan应助张乐渝采纳,获得10
6秒前
传奇3应助叶博采纳,获得10
6秒前
科研实习生完成签到,获得积分0
6秒前
无花果应助ont-tnt采纳,获得10
7秒前
hzx完成签到,获得积分10
7秒前
8秒前
我是老大应助小样采纳,获得10
8秒前
fdvs发布了新的文献求助10
9秒前
9秒前
LiDaYang完成签到,获得积分10
9秒前
落忆完成签到 ,获得积分10
10秒前
xx完成签到,获得积分10
10秒前
11秒前
优秀傲之发布了新的文献求助10
11秒前
pengchen完成签到,获得积分10
11秒前
11秒前
Harevin完成签到,获得积分10
11秒前
自由颖完成签到,获得积分10
12秒前
乐乐应助高兔兔采纳,获得10
12秒前
12秒前
12秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245368
求助须知:如何正确求助?哪些是违规求助? 2888984
关于积分的说明 8256491
捐赠科研通 2557345
什么是DOI,文献DOI怎么找? 1386046
科研通“疑难数据库(出版商)”最低求助积分说明 650285
邀请新用户注册赠送积分活动 626540