Development and validation of a new algorithm for improved cardiovascular risk prediction

医学 弗雷明翰风险评分 置信区间 疾病 肺癌 风险评估 内科学 计算机科学 计算机安全
作者
Julia Hippisley‐Cox,Carol Coupland,Mona Bafadhel,Richard Russell,Aziz Sheikh,Peter Brindle,Keith M. Channon
出处
期刊:Nature Medicine [Springer Nature]
卷期号:30 (5): 1440-1447 被引量:11
标识
DOI:10.1038/s41591-024-02905-y
摘要

Abstract QRISK algorithms use data from millions of people to help clinicians identify individuals at high risk of cardiovascular disease (CVD). Here, we derive and externally validate a new algorithm, which we have named QR4, that incorporates novel risk factors to estimate 10-year CVD risk separately for men and women. Health data from 9.98 million and 6.79 million adults from the United Kingdom were used for derivation and validation of the algorithm, respectively. Cause-specific Cox models were used to develop models to predict CVD risk, and the performance of QR4 was compared with version 3 of QRISK, Systematic Coronary Risk Evaluation 2 (SCORE2) and atherosclerotic cardiovascular disease (ASCVD) risk scores. We identified seven novel risk factors in models for both men and women (brain cancer, lung cancer, Down syndrome, blood cancer, chronic obstructive pulmonary disease, oral cancer and learning disability) and two additional novel risk factors in women (pre-eclampsia and postnatal depression). On external validation, QR4 had a higher C statistic than QRISK3 in both women (0.835 (95% confidence interval (CI), 0.833–0.837) and 0.831 (95% CI, 0.829–0.832) for QR4 and QRISK3, respectively) and men (0.814 (95% CI, 0.812–0.816) and 0.812 (95% CI, 0.810–0.814) for QR4 and QRISK3, respectively). QR4 was also more accurate than the ASCVD and SCORE2 risk scores in both men and women. The QR4 risk score identifies new risk groups and provides superior CVD risk prediction in the United Kingdom compared with other international scoring systems for CVD risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bj关注了科研通微信公众号
刚刚
szh111完成签到,获得积分10
1秒前
3秒前
3秒前
4秒前
miao完成签到,获得积分10
4秒前
金水西北发布了新的文献求助10
6秒前
8秒前
科研南发布了新的文献求助10
8秒前
情怀应助子云采纳,获得10
9秒前
务实的雨文完成签到,获得积分10
10秒前
来杯牛奶发布了新的文献求助10
11秒前
温柔海露发布了新的文献求助10
12秒前
13秒前
14秒前
黎明之光完成签到,获得积分10
14秒前
王梦秋完成签到 ,获得积分10
15秒前
赘婿应助tkx是流氓兔采纳,获得10
15秒前
alu完成签到,获得积分10
16秒前
自觉画板完成签到,获得积分10
16秒前
高高友桃完成签到,获得积分10
18秒前
往事完成签到,获得积分10
18秒前
JamesPei应助科研南采纳,获得10
18秒前
orange9发布了新的文献求助10
18秒前
18秒前
科研yu完成签到,获得积分10
18秒前
20秒前
Ll_l完成签到,获得积分10
22秒前
金水西北完成签到,获得积分10
22秒前
子云发布了新的文献求助10
23秒前
26秒前
26秒前
27秒前
28秒前
自業自得完成签到 ,获得积分10
28秒前
涂山白切鸡完成签到,获得积分10
29秒前
30秒前
Akim应助科研通管家采纳,获得10
30秒前
在水一方应助科研通管家采纳,获得10
30秒前
所所应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306147
求助须知:如何正确求助?哪些是违规求助? 4452011
关于积分的说明 13853601
捐赠科研通 4339475
什么是DOI,文献DOI怎么找? 2382636
邀请新用户注册赠送积分活动 1377583
关于科研通互助平台的介绍 1345190