Explainable AI for CHO cell culture media optimization and prediction of critical quality attribute

特征选择 计算机科学 关键质量属性 特征(语言学) 排名(信息检索) 质量(理念) 生化工程 数据挖掘 人工智能 机器学习 化学 工程类 哲学 物理化学 认识论 粒径 语言学
作者
Neelesh Gangwar,Keerthiveena Balraj,Anurag S. Rathore
出处
期刊:Applied Microbiology and Biotechnology [Springer Nature]
卷期号:108 (1): 308-308 被引量:13
标识
DOI:10.1007/s00253-024-13147-w
摘要

Abstract Cell culture media play a critical role in cell growth and propagation by providing a substrate; media components can also modulate the critical quality attributes (CQAs). However, the inherent complexity of the cell culture media makes unraveling the impact of the various media components on cell growth and CQAs non-trivial. In this study, we demonstrate an end-to-end machine learning framework for media component selection and prediction of CQAs. The preliminary dataset for feature selection was generated by performing CHO-GS (-/-) cell culture in media formulations with varying metal ion concentrations. Acidic and basic charge variant composition of the innovator product (24.97 ± 0.54% acidic and 11.41 ± 1.44% basic) was chosen as the target variable to evaluate the media formulations. Pearson’s correlation coefficient and random forest-based techniques were used for feature ranking and feature selection for the prediction of acidic and basic charge variants. Furthermore, a global interpretation analysis using SHapley Additive exPlanations was utilized to select optimal features by evaluating the contributions of each feature in the extracted vectors. Finally, the medium combinations were predicted by employing fifteen different regression models and utilizing a grid search and random search cross-validation for hyperparameter optimization. Experimental results demonstrate that Fe and Zn significantly impact the charge variant profile. This study aims to offer insights that are pertinent to both innovators seeking to establish a complete pipeline for media development and optimization and biosimilar-based manufacturers who strive to demonstrate the analytical and functional biosimilarity of their products to the innovator. Key points • Developed a framework for optimizing media components and prediction of CQA. • SHAP enhances global interpretability, aiding informed decision-making. • Fifteen regression models were employed to predict medium combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊羊羊完成签到,获得积分10
刚刚
赘婿应助壮观果汁采纳,获得10
刚刚
Zhi应助Chuwei采纳,获得10
刚刚
科研通AI6.1应助随意采纳,获得10
刚刚
王豆豆发布了新的文献求助10
刚刚
成就映秋完成签到,获得积分10
刚刚
化学喵完成签到 ,获得积分10
1秒前
1秒前
000v000发布了新的文献求助50
1秒前
chu完成签到,获得积分20
2秒前
deerning完成签到,获得积分10
2秒前
wyz完成签到 ,获得积分10
2秒前
Alice完成签到,获得积分10
2秒前
云馨完成签到,获得积分10
2秒前
Owen应助故里采纳,获得10
3秒前
张乐由完成签到,获得积分10
4秒前
4秒前
4秒前
归尘发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
qq596完成签到,获得积分10
4秒前
小米应助chu采纳,获得10
6秒前
李爱国应助24采纳,获得10
6秒前
6秒前
轻松的芯完成签到 ,获得积分0
6秒前
量子星尘发布了新的文献求助10
6秒前
醉酒皮皮虾完成签到 ,获得积分10
7秒前
英俊的铭应助YXHTCM采纳,获得10
7秒前
7秒前
认真觅荷完成签到 ,获得积分10
7秒前
8秒前
9秒前
9秒前
烟花应助黄奥龙采纳,获得10
9秒前
忧虑的乐驹完成签到,获得积分10
9秒前
xu完成签到,获得积分10
10秒前
CHEN完成签到,获得积分10
11秒前
画卷完成签到 ,获得积分10
11秒前
小恐龙发布了新的文献求助10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774528
求助须知:如何正确求助?哪些是违规求助? 5618245
关于积分的说明 15436081
捐赠科研通 4907003
什么是DOI,文献DOI怎么找? 2640503
邀请新用户注册赠送积分活动 1588336
关于科研通互助平台的介绍 1543291