已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Explainable AI for CHO cell culture media optimization and prediction of critical quality attribute

特征选择 计算机科学 关键质量属性 特征(语言学) 排名(信息检索) 质量(理念) 生化工程 数据挖掘 人工智能 机器学习 化学 工程类 哲学 物理化学 认识论 粒径 语言学
作者
Neelesh Gangwar,Keerthiveena Balraj,Anurag S. Rathore
出处
期刊:Applied Microbiology and Biotechnology [Springer Nature]
卷期号:108 (1): 308-308 被引量:13
标识
DOI:10.1007/s00253-024-13147-w
摘要

Abstract Cell culture media play a critical role in cell growth and propagation by providing a substrate; media components can also modulate the critical quality attributes (CQAs). However, the inherent complexity of the cell culture media makes unraveling the impact of the various media components on cell growth and CQAs non-trivial. In this study, we demonstrate an end-to-end machine learning framework for media component selection and prediction of CQAs. The preliminary dataset for feature selection was generated by performing CHO-GS (-/-) cell culture in media formulations with varying metal ion concentrations. Acidic and basic charge variant composition of the innovator product (24.97 ± 0.54% acidic and 11.41 ± 1.44% basic) was chosen as the target variable to evaluate the media formulations. Pearson’s correlation coefficient and random forest-based techniques were used for feature ranking and feature selection for the prediction of acidic and basic charge variants. Furthermore, a global interpretation analysis using SHapley Additive exPlanations was utilized to select optimal features by evaluating the contributions of each feature in the extracted vectors. Finally, the medium combinations were predicted by employing fifteen different regression models and utilizing a grid search and random search cross-validation for hyperparameter optimization. Experimental results demonstrate that Fe and Zn significantly impact the charge variant profile. This study aims to offer insights that are pertinent to both innovators seeking to establish a complete pipeline for media development and optimization and biosimilar-based manufacturers who strive to demonstrate the analytical and functional biosimilarity of their products to the innovator. Key points • Developed a framework for optimizing media components and prediction of CQA. • SHAP enhances global interpretability, aiding informed decision-making. • Fifteen regression models were employed to predict medium combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
董欣雨完成签到,获得积分10
1秒前
2秒前
lxl发布了新的文献求助10
2秒前
塔莉娅完成签到,获得积分10
3秒前
Cloud发布了新的文献求助10
4秒前
一叶知秋完成签到,获得积分10
4秒前
嘟嘟发布了新的文献求助10
6秒前
yyc发布了新的文献求助10
6秒前
谭续燊完成签到,获得积分10
6秒前
科研通AI6应助打喷嚏的猪采纳,获得10
7秒前
刻苦慕晴完成签到 ,获得积分10
8秒前
冷静剑成发布了新的文献求助10
9秒前
9秒前
Dd完成签到,获得积分10
9秒前
无私平彤发布了新的文献求助10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
ZOE应助科研通管家采纳,获得100
11秒前
BowieHuang应助科研通管家采纳,获得10
12秒前
BowieHuang应助科研通管家采纳,获得10
12秒前
科目三应助科研通管家采纳,获得20
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
共享精神应助嘟嘟采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
嘿嘿应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得30
12秒前
12秒前
12秒前
开心完成签到 ,获得积分10
13秒前
打开太阳关注了科研通微信公众号
13秒前
kk发布了新的文献求助10
15秒前
阿达完成签到 ,获得积分10
16秒前
耿耿于怀应助ceeray23采纳,获得20
16秒前
18秒前
haizz完成签到 ,获得积分10
18秒前
冷静剑成完成签到,获得积分10
18秒前
奂毛发布了新的文献求助10
21秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590110
求助须知:如何正确求助?哪些是违规求助? 4674555
关于积分的说明 14794353
捐赠科研通 4630157
什么是DOI,文献DOI怎么找? 2532551
邀请新用户注册赠送积分活动 1501202
关于科研通互助平台的介绍 1468571