Explainable AI for CHO cell culture media optimization and prediction of critical quality attribute

特征选择 计算机科学 关键质量属性 特征(语言学) 排名(信息检索) 质量(理念) 生化工程 数据挖掘 人工智能 机器学习 化学 工程类 哲学 物理化学 认识论 粒径 语言学
作者
Neelesh Gangwar,Keerthiveena Balraj,Anurag S. Rathore
出处
期刊:Applied Microbiology and Biotechnology [Springer Nature]
卷期号:108 (1) 被引量:4
标识
DOI:10.1007/s00253-024-13147-w
摘要

Abstract Cell culture media play a critical role in cell growth and propagation by providing a substrate; media components can also modulate the critical quality attributes (CQAs). However, the inherent complexity of the cell culture media makes unraveling the impact of the various media components on cell growth and CQAs non-trivial. In this study, we demonstrate an end-to-end machine learning framework for media component selection and prediction of CQAs. The preliminary dataset for feature selection was generated by performing CHO-GS (-/-) cell culture in media formulations with varying metal ion concentrations. Acidic and basic charge variant composition of the innovator product (24.97 ± 0.54% acidic and 11.41 ± 1.44% basic) was chosen as the target variable to evaluate the media formulations. Pearson’s correlation coefficient and random forest-based techniques were used for feature ranking and feature selection for the prediction of acidic and basic charge variants. Furthermore, a global interpretation analysis using SHapley Additive exPlanations was utilized to select optimal features by evaluating the contributions of each feature in the extracted vectors. Finally, the medium combinations were predicted by employing fifteen different regression models and utilizing a grid search and random search cross-validation for hyperparameter optimization. Experimental results demonstrate that Fe and Zn significantly impact the charge variant profile. This study aims to offer insights that are pertinent to both innovators seeking to establish a complete pipeline for media development and optimization and biosimilar-based manufacturers who strive to demonstrate the analytical and functional biosimilarity of their products to the innovator. Key points • Developed a framework for optimizing media components and prediction of CQA. • SHAP enhances global interpretability, aiding informed decision-making. • Fifteen regression models were employed to predict medium combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闫辰龙发布了新的文献求助10
1秒前
小林发布了新的文献求助10
2秒前
英俊的铭应助AA18236931952采纳,获得10
2秒前
李华完成签到,获得积分10
3秒前
3秒前
3秒前
nathaliess完成签到,获得积分10
4秒前
4秒前
慕青应助稳重雁易采纳,获得30
4秒前
6秒前
jason完成签到,获得积分10
6秒前
NaNA完成签到,获得积分10
7秒前
啦啦啦完成签到,获得积分10
7秒前
7秒前
王志新完成签到,获得积分10
8秒前
无辜的笑蓝完成签到,获得积分10
8秒前
8秒前
Sicily发布了新的文献求助10
9秒前
林夏完成签到,获得积分10
9秒前
Imcarie完成签到 ,获得积分10
11秒前
肆_完成签到 ,获得积分10
11秒前
无极微光应助缓慢咖啡采纳,获得20
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
赫连烙发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
ququ完成签到,获得积分20
14秒前
隐形曼青应助狄百招采纳,获得10
16秒前
16秒前
17秒前
17秒前
阿狸完成签到,获得积分10
19秒前
nhscyhy发布了新的文献求助10
19秒前
ququ发布了新的文献求助10
19秒前
英俊的铭应助鲁鱼采纳,获得10
20秒前
21秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537074
求助须知:如何正确求助?哪些是违规求助? 4624638
关于积分的说明 14592736
捐赠科研通 4565155
什么是DOI,文献DOI怎么找? 2502201
邀请新用户注册赠送积分活动 1480908
关于科研通互助平台的介绍 1452098