Explainable AI for CHO cell culture media optimization and prediction of critical quality attribute

特征选择 计算机科学 关键质量属性 特征(语言学) 排名(信息检索) 质量(理念) 生化工程 数据挖掘 人工智能 机器学习 化学 工程类 哲学 物理化学 认识论 粒径 语言学
作者
Neelesh Gangwar,Keerthiveena Balraj,Anurag S. Rathore
出处
期刊:Applied Microbiology and Biotechnology [Springer Nature]
卷期号:108 (1): 308-308 被引量:13
标识
DOI:10.1007/s00253-024-13147-w
摘要

Abstract Cell culture media play a critical role in cell growth and propagation by providing a substrate; media components can also modulate the critical quality attributes (CQAs). However, the inherent complexity of the cell culture media makes unraveling the impact of the various media components on cell growth and CQAs non-trivial. In this study, we demonstrate an end-to-end machine learning framework for media component selection and prediction of CQAs. The preliminary dataset for feature selection was generated by performing CHO-GS (-/-) cell culture in media formulations with varying metal ion concentrations. Acidic and basic charge variant composition of the innovator product (24.97 ± 0.54% acidic and 11.41 ± 1.44% basic) was chosen as the target variable to evaluate the media formulations. Pearson’s correlation coefficient and random forest-based techniques were used for feature ranking and feature selection for the prediction of acidic and basic charge variants. Furthermore, a global interpretation analysis using SHapley Additive exPlanations was utilized to select optimal features by evaluating the contributions of each feature in the extracted vectors. Finally, the medium combinations were predicted by employing fifteen different regression models and utilizing a grid search and random search cross-validation for hyperparameter optimization. Experimental results demonstrate that Fe and Zn significantly impact the charge variant profile. This study aims to offer insights that are pertinent to both innovators seeking to establish a complete pipeline for media development and optimization and biosimilar-based manufacturers who strive to demonstrate the analytical and functional biosimilarity of their products to the innovator. Key points • Developed a framework for optimizing media components and prediction of CQA. • SHAP enhances global interpretability, aiding informed decision-making. • Fifteen regression models were employed to predict medium combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
29完成签到,获得积分10
1秒前
楚子关发布了新的文献求助10
2秒前
dujinjun发布了新的文献求助10
3秒前
小迷糊完成签到 ,获得积分10
3秒前
whynot发布了新的文献求助10
4秒前
4秒前
刘刘发布了新的文献求助10
4秒前
Antonio完成签到,获得积分10
4秒前
一路生花发布了新的文献求助10
4秒前
5秒前
5秒前
小蘑菇应助流苏采纳,获得10
5秒前
何my完成签到 ,获得积分10
5秒前
桐桐应助艳淑采纳,获得10
6秒前
哈喽小雪完成签到,获得积分10
7秒前
研友_8yN60L完成签到,获得积分10
7秒前
7秒前
时尚冬卉完成签到,获得积分10
8秒前
内向乾完成签到,获得积分10
8秒前
NexusExplorer应助wuwu采纳,获得10
8秒前
haha完成签到,获得积分10
10秒前
时尚冬卉发布了新的文献求助10
10秒前
朴素的月光完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
安安发布了新的文献求助10
11秒前
上官枫完成签到 ,获得积分10
11秒前
斯文败类应助江江江11采纳,获得10
11秒前
21完成签到,获得积分10
11秒前
加油干完成签到,获得积分10
13秒前
13秒前
hhchhcmxhf完成签到,获得积分10
15秒前
小莨应助妮妮采纳,获得10
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
田様应助起风了采纳,获得10
16秒前
迷路的代曼完成签到,获得积分10
16秒前
Shaynin完成签到,获得积分10
16秒前
彭彭发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733747
求助须知:如何正确求助?哪些是违规求助? 5350934
关于积分的说明 15325244
捐赠科研通 4878769
什么是DOI,文献DOI怎么找? 2621401
邀请新用户注册赠送积分活动 1570515
关于科研通互助平台的介绍 1527476