Explainable AI for CHO cell culture media optimization and prediction of critical quality attribute

特征选择 计算机科学 关键质量属性 特征(语言学) 排名(信息检索) 质量(理念) 生化工程 数据挖掘 人工智能 机器学习 化学 工程类 哲学 物理化学 认识论 粒径 语言学
作者
Neelesh Gangwar,Keerthiveena Balraj,Anurag S. Rathore
出处
期刊:Applied Microbiology and Biotechnology [Springer Nature]
卷期号:108 (1) 被引量:4
标识
DOI:10.1007/s00253-024-13147-w
摘要

Abstract Cell culture media play a critical role in cell growth and propagation by providing a substrate; media components can also modulate the critical quality attributes (CQAs). However, the inherent complexity of the cell culture media makes unraveling the impact of the various media components on cell growth and CQAs non-trivial. In this study, we demonstrate an end-to-end machine learning framework for media component selection and prediction of CQAs. The preliminary dataset for feature selection was generated by performing CHO-GS (-/-) cell culture in media formulations with varying metal ion concentrations. Acidic and basic charge variant composition of the innovator product (24.97 ± 0.54% acidic and 11.41 ± 1.44% basic) was chosen as the target variable to evaluate the media formulations. Pearson’s correlation coefficient and random forest-based techniques were used for feature ranking and feature selection for the prediction of acidic and basic charge variants. Furthermore, a global interpretation analysis using SHapley Additive exPlanations was utilized to select optimal features by evaluating the contributions of each feature in the extracted vectors. Finally, the medium combinations were predicted by employing fifteen different regression models and utilizing a grid search and random search cross-validation for hyperparameter optimization. Experimental results demonstrate that Fe and Zn significantly impact the charge variant profile. This study aims to offer insights that are pertinent to both innovators seeking to establish a complete pipeline for media development and optimization and biosimilar-based manufacturers who strive to demonstrate the analytical and functional biosimilarity of their products to the innovator. Key points • Developed a framework for optimizing media components and prediction of CQA. • SHAP enhances global interpretability, aiding informed decision-making. • Fifteen regression models were employed to predict medium combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助璟晔采纳,获得10
1秒前
zybbb发布了新的文献求助10
1秒前
魏京京完成签到,获得积分10
1秒前
1秒前
小蘑菇应助Sylvia采纳,获得10
1秒前
yaya完成签到,获得积分10
1秒前
哇奥发布了新的文献求助10
2秒前
阿莫西西林完成签到,获得积分10
2秒前
潘多拉完成签到,获得积分10
2秒前
赘婿应助认真的TOTORO采纳,获得10
2秒前
dxannie完成签到,获得积分10
2秒前
我是老大应助熊熊熊采纳,获得10
3秒前
3秒前
唠叨的秋蝶完成签到,获得积分10
3秒前
徐木木完成签到,获得积分10
3秒前
3秒前
怡然凝云发布了新的文献求助10
3秒前
4秒前
AIO完成签到,获得积分10
4秒前
4秒前
吐个泡泡完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
Fsy发布了新的文献求助30
6秒前
科研通AI2S应助ada采纳,获得10
6秒前
高兴123发布了新的文献求助10
7秒前
畅快若剑发布了新的文献求助10
7秒前
温婉的谷菱完成签到,获得积分10
7秒前
OKYT发布了新的文献求助10
7秒前
7秒前
8秒前
独特的鹅完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
Simo发布了新的文献求助10
11秒前
小二郎应助ECHO采纳,获得10
11秒前
椰子完成签到 ,获得积分10
11秒前
iNk应助花花采纳,获得20
12秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572