Explainable AI for CHO cell culture media optimization and prediction of critical quality attribute

特征选择 计算机科学 关键质量属性 特征(语言学) 排名(信息检索) 质量(理念) 生化工程 数据挖掘 人工智能 机器学习 化学 工程类 哲学 物理化学 认识论 粒径 语言学
作者
Neelesh Gangwar,Keerthiveena Balraj,Anurag S. Rathore
出处
期刊:Applied Microbiology and Biotechnology [Springer Nature]
卷期号:108 (1) 被引量:2
标识
DOI:10.1007/s00253-024-13147-w
摘要

Abstract Cell culture media play a critical role in cell growth and propagation by providing a substrate; media components can also modulate the critical quality attributes (CQAs). However, the inherent complexity of the cell culture media makes unraveling the impact of the various media components on cell growth and CQAs non-trivial. In this study, we demonstrate an end-to-end machine learning framework for media component selection and prediction of CQAs. The preliminary dataset for feature selection was generated by performing CHO-GS (-/-) cell culture in media formulations with varying metal ion concentrations. Acidic and basic charge variant composition of the innovator product (24.97 ± 0.54% acidic and 11.41 ± 1.44% basic) was chosen as the target variable to evaluate the media formulations. Pearson’s correlation coefficient and random forest-based techniques were used for feature ranking and feature selection for the prediction of acidic and basic charge variants. Furthermore, a global interpretation analysis using SHapley Additive exPlanations was utilized to select optimal features by evaluating the contributions of each feature in the extracted vectors. Finally, the medium combinations were predicted by employing fifteen different regression models and utilizing a grid search and random search cross-validation for hyperparameter optimization. Experimental results demonstrate that Fe and Zn significantly impact the charge variant profile. This study aims to offer insights that are pertinent to both innovators seeking to establish a complete pipeline for media development and optimization and biosimilar-based manufacturers who strive to demonstrate the analytical and functional biosimilarity of their products to the innovator. Key points • Developed a framework for optimizing media components and prediction of CQA. • SHAP enhances global interpretability, aiding informed decision-making. • Fifteen regression models were employed to predict medium combinations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晓书完成签到 ,获得积分10
1秒前
huchen完成签到,获得积分20
2秒前
2秒前
2秒前
dan1029发布了新的文献求助10
2秒前
2秒前
NexusExplorer应助nnnn采纳,获得10
3秒前
现代成风给现代成风的求助进行了留言
3秒前
万能图书馆应助Dalia采纳,获得10
3秒前
8R60d8应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
李沐晴完成签到,获得积分10
3秒前
3秒前
8R60d8应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
子车茗应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
dan1029发布了新的文献求助10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
drew应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
NYM完成签到,获得积分10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
5秒前
orixero应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
5秒前
今后应助科研通管家采纳,获得10
5秒前
Orange应助科视采纳,获得10
5秒前
6秒前
小二郎应助ssk采纳,获得10
6秒前
丘比特应助wang采纳,获得20
6秒前
shizi发布了新的文献求助10
6秒前
暑假要完成签到,获得积分10
7秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227124
求助须知:如何正确求助?哪些是违规求助? 2875291
关于积分的说明 8190203
捐赠科研通 2542475
什么是DOI,文献DOI怎么找? 1372802
科研通“疑难数据库(出版商)”最低求助积分说明 646537
邀请新用户注册赠送积分活动 620971