Linear semantic transformation for semi-supervised medical image segmentation

计算机科学 语义学(计算机科学) 转化(遗传学) 人工智能 分割 特征(语言学) 背景(考古学) 代表(政治) 图像分割 特征学习 监督学习 模式识别(心理学) 机器学习 人工神经网络 政治学 生物 语言学 法学 程序设计语言 化学 生物化学 古生物学 哲学 基因 政治
作者
Cheng Chen,Yunqing Chen,Xiaoheng Li,Huansheng Ning,Ruoxiu Xiao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:173: 108331-108331 被引量:5
标识
DOI:10.1016/j.compbiomed.2024.108331
摘要

Medical image segmentation is a focus research and foundation in developing intelligent medical systems. Recently, deep learning for medical image segmentation has become a standard process and succeeded significantly, promoting the development of reconstruction, and surgical planning of disease diagnosis. However, semantic learning is often inefficient owing to the lack of supervision of feature maps, resulting in that high-quality segmentation models always rely on numerous and accurate data annotations. Learning robust semantic representation in latent spaces remains a challenge. In this paper, we propose a novel semi-supervised learning framework to learn vital attributes in medical images, which constructs generalized representation from diverse semantics to realize medical image segmentation. We first build a self-supervised learning part that achieves context recovery by reconstructing space and intensity of medical images, which conduct semantic representation for feature maps. Subsequently, we combine semantic-rich feature maps and utilize simple linear semantic transformation to convert them into image segmentation. The proposed framework was tested using five medical segmentation datasets. Quantitative assessments indicate the highest scores of our method on IXI (73.78%), ScaF (47.50%), COVID-19-Seg (50.72%), PC-Seg (65.06%), and Brain-MR (72.63%) datasets. Finally, we compared our method with the latest semi-supervised learning methods and obtained 77.15% and 75.22% DSC values, respectively, ranking first on two representative datasets. The experimental results not only proved that the proposed linear semantic transformation was effectively applied to medical image segmentation, but also presented its simplicity and ease-of-use to pursue robust segmentation in semi-supervised learning. Our code is now open at: https://github.com/QingYunA/Linear-Semantic-Transformation-for-Semi-Supervised-Medical-Image-Segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肖婉婷完成签到,获得积分10
刚刚
BowieHuang应助SSY采纳,获得10
刚刚
稳中的豆沙包完成签到 ,获得积分10
1秒前
媛媛完成签到,获得积分10
1秒前
鲁木发布了新的文献求助10
2秒前
33完成签到,获得积分10
2秒前
chen01hang应助我不是BOB采纳,获得50
3秒前
李健应助彬彬发文章采纳,获得10
3秒前
Honahlee完成签到,获得积分10
3秒前
马明旋发布了新的文献求助20
4秒前
4秒前
5秒前
852应助strongfrog采纳,获得10
5秒前
科研通AI6应助清秀送终采纳,获得10
6秒前
6秒前
6秒前
6秒前
CipherSage应助TearMarks采纳,获得10
6秒前
silin完成签到,获得积分10
6秒前
小豆包完成签到,获得积分20
7秒前
xttju2014发布了新的文献求助10
7秒前
7秒前
super完成签到,获得积分20
8秒前
8秒前
Ak完成签到,获得积分0
8秒前
田小班发布了新的文献求助10
9秒前
Irene发布了新的文献求助10
9秒前
认真日记本完成签到 ,获得积分10
9秒前
www发布了新的文献求助10
9秒前
10秒前
桐桐应助哈哈哈哈哈哈采纳,获得10
10秒前
李小莉0419发布了新的文献求助10
10秒前
Ava应助MC采纳,获得10
11秒前
baobaot发布了新的文献求助30
11秒前
11秒前
承乐应助小豆包采纳,获得10
11秒前
英姑应助小豆包采纳,获得10
11秒前
秋寒完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
斯文败类应助mikiisme采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836