Linear semantic transformation for semi-supervised medical image segmentation

计算机科学 语义学(计算机科学) 转化(遗传学) 人工智能 分割 特征(语言学) 背景(考古学) 代表(政治) 图像分割 特征学习 监督学习 模式识别(心理学) 机器学习 人工神经网络 政治学 生物 语言学 法学 程序设计语言 化学 生物化学 古生物学 哲学 基因 政治
作者
Cheng Chen,Yunqing Chen,Xiaoheng Li,Huansheng Ning,Ruoxiu Xiao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:173: 108331-108331
标识
DOI:10.1016/j.compbiomed.2024.108331
摘要

Medical image segmentation is a focus research and foundation in developing intelligent medical systems. Recently, deep learning for medical image segmentation has become a standard process and succeeded significantly, promoting the development of reconstruction, and surgical planning of disease diagnosis. However, semantic learning is often inefficient owing to the lack of supervision of feature maps, resulting in that high-quality segmentation models always rely on numerous and accurate data annotations. Learning robust semantic representation in latent spaces remains a challenge. In this paper, we propose a novel semi-supervised learning framework to learn vital attributes in medical images, which constructs generalized representation from diverse semantics to realize medical image segmentation. We first build a self-supervised learning part that achieves context recovery by reconstructing space and intensity of medical images, which conduct semantic representation for feature maps. Subsequently, we combine semantic-rich feature maps and utilize simple linear semantic transformation to convert them into image segmentation. The proposed framework was tested using five medical segmentation datasets. Quantitative assessments indicate the highest scores of our method on IXI (73.78%), ScaF (47.50%), COVID-19-Seg (50.72%), PC-Seg (65.06%), and Brain-MR (72.63%) datasets. Finally, we compared our method with the latest semi-supervised learning methods and obtained 77.15% and 75.22% DSC values, respectively, ranking first on two representative datasets. The experimental results not only proved that the proposed linear semantic transformation was effectively applied to medical image segmentation, but also presented its simplicity and ease-of-use to pursue robust segmentation in semi-supervised learning. Our code is now open at: https://github.com/QingYunA/Linear-Semantic-Transformation-for-Semi-Supervised-Medical-Image-Segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青云完成签到,获得积分10
2秒前
倒霉的芒果完成签到 ,获得积分10
2秒前
酷酷的树叶完成签到 ,获得积分10
4秒前
翟闻雨完成签到,获得积分10
4秒前
cdd完成签到,获得积分10
5秒前
闵不悔完成签到,获得积分10
5秒前
7秒前
小果完成签到 ,获得积分10
9秒前
隼叶完成签到 ,获得积分10
10秒前
少女徐必成完成签到 ,获得积分10
11秒前
鲁滨逊完成签到 ,获得积分10
13秒前
追梦发布了新的文献求助10
14秒前
Joy完成签到,获得积分10
15秒前
归尘应助nteicu采纳,获得10
16秒前
Nakjeong完成签到 ,获得积分10
16秒前
17秒前
Hiram完成签到,获得积分10
18秒前
科研通AI2S应助姗姗采纳,获得10
18秒前
19秒前
22秒前
Shaynin完成签到,获得积分10
22秒前
聪明的寒梅完成签到 ,获得积分10
23秒前
栾小鱼发布了新的文献求助10
24秒前
小破仁完成签到,获得积分10
27秒前
songyu完成签到,获得积分10
31秒前
斯奈克完成签到,获得积分10
31秒前
咄咄完成签到 ,获得积分10
32秒前
欢喜板凳完成签到 ,获得积分0
32秒前
33秒前
七七完成签到,获得积分10
33秒前
林天完成签到,获得积分10
35秒前
JKL77完成签到 ,获得积分10
36秒前
滴滴答答完成签到 ,获得积分10
37秒前
邢夏之完成签到 ,获得积分10
38秒前
简单完成签到 ,获得积分10
39秒前
40秒前
盼盼完成签到,获得积分10
40秒前
完美世界应助Justtry采纳,获得10
43秒前
倾听阳光完成签到 ,获得积分10
43秒前
栾小鱼完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4870938
求助须知:如何正确求助?哪些是违规求助? 4161119
关于积分的说明 12902597
捐赠科研通 3916846
什么是DOI,文献DOI怎么找? 2150877
邀请新用户注册赠送积分活动 1169150
关于科研通互助平台的介绍 1072985