Linear semantic transformation for semi-supervised medical image segmentation

计算机科学 语义学(计算机科学) 转化(遗传学) 人工智能 分割 特征(语言学) 背景(考古学) 代表(政治) 图像分割 特征学习 监督学习 模式识别(心理学) 机器学习 人工神经网络 程序设计语言 生物 法学 政治学 政治 语言学 哲学 古生物学 基因 化学 生物化学
作者
Cheng Chen,Yunqing Chen,Xiaoheng Li,Huansheng Ning,Ruoxiu Xiao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:173: 108331-108331
标识
DOI:10.1016/j.compbiomed.2024.108331
摘要

Medical image segmentation is a focus research and foundation in developing intelligent medical systems. Recently, deep learning for medical image segmentation has become a standard process and succeeded significantly, promoting the development of reconstruction, and surgical planning of disease diagnosis. However, semantic learning is often inefficient owing to the lack of supervision of feature maps, resulting in that high-quality segmentation models always rely on numerous and accurate data annotations. Learning robust semantic representation in latent spaces remains a challenge. In this paper, we propose a novel semi-supervised learning framework to learn vital attributes in medical images, which constructs generalized representation from diverse semantics to realize medical image segmentation. We first build a self-supervised learning part that achieves context recovery by reconstructing space and intensity of medical images, which conduct semantic representation for feature maps. Subsequently, we combine semantic-rich feature maps and utilize simple linear semantic transformation to convert them into image segmentation. The proposed framework was tested using five medical segmentation datasets. Quantitative assessments indicate the highest scores of our method on IXI (73.78%), ScaF (47.50%), COVID-19-Seg (50.72%), PC-Seg (65.06%), and Brain-MR (72.63%) datasets. Finally, we compared our method with the latest semi-supervised learning methods and obtained 77.15% and 75.22% DSC values, respectively, ranking first on two representative datasets. The experimental results not only proved that the proposed linear semantic transformation was effectively applied to medical image segmentation, but also presented its simplicity and ease-of-use to pursue robust segmentation in semi-supervised learning. Our code is now open at: https://github.com/QingYunA/Linear-Semantic-Transformation-for-Semi-Supervised-Medical-Image-Segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助Cai采纳,获得10
刚刚
CipherSage应助芘二胺采纳,获得10
刚刚
天之道发布了新的文献求助10
1秒前
小辛发布了新的文献求助10
2秒前
xsf发布了新的文献求助10
2秒前
深情安青应助哈哈采纳,获得10
2秒前
酷波er应助自然浩阑采纳,获得30
4秒前
wanci应助柚子采纳,获得10
5秒前
6秒前
好吧不是完成签到,获得积分20
7秒前
xiaou完成签到,获得积分10
8秒前
思源应助xsf采纳,获得10
10秒前
姜起蛟发布了新的文献求助10
11秒前
伶俐一曲完成签到,获得积分10
11秒前
12秒前
称心凡霜完成签到,获得积分10
15秒前
伶俐一曲发布了新的文献求助10
16秒前
17秒前
SUN发布了新的文献求助10
17秒前
20秒前
景色完成签到,获得积分10
20秒前
江蓠完成签到,获得积分10
22秒前
23秒前
英姑应助maclogos采纳,获得10
23秒前
24秒前
You发布了新的文献求助10
24秒前
陶醉寒荷发布了新的文献求助30
24秒前
24秒前
丰知然应助香蕉鼠标采纳,获得10
26秒前
852应助香蕉鼠标采纳,获得10
26秒前
慕航发布了新的文献求助10
28秒前
28秒前
清蒸可达鸭完成签到,获得积分10
29秒前
好吧不是发布了新的文献求助10
29秒前
30秒前
嘤嘤怪应助lzc采纳,获得20
30秒前
桐桐应助Ana采纳,获得10
31秒前
传奇3应助小夫采纳,获得10
31秒前
34秒前
畅快香菇完成签到 ,获得积分10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301649
求助须知:如何正确求助?哪些是违规求助? 2936248
关于积分的说明 8476984
捐赠科研通 2610006
什么是DOI,文献DOI怎么找? 1424988
科研通“疑难数据库(出版商)”最低求助积分说明 662216
邀请新用户注册赠送积分活动 646340