Linear semantic transformation for semi-supervised medical image segmentation

计算机科学 语义学(计算机科学) 转化(遗传学) 人工智能 分割 特征(语言学) 背景(考古学) 代表(政治) 图像分割 特征学习 监督学习 模式识别(心理学) 机器学习 人工神经网络 程序设计语言 生物 法学 政治学 政治 语言学 哲学 古生物学 基因 化学 生物化学
作者
Cheng Chen,Yunqing Chen,Xiaoheng Li,Huansheng Ning,Ruoxiu Xiao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:173: 108331-108331
标识
DOI:10.1016/j.compbiomed.2024.108331
摘要

Medical image segmentation is a focus research and foundation in developing intelligent medical systems. Recently, deep learning for medical image segmentation has become a standard process and succeeded significantly, promoting the development of reconstruction, and surgical planning of disease diagnosis. However, semantic learning is often inefficient owing to the lack of supervision of feature maps, resulting in that high-quality segmentation models always rely on numerous and accurate data annotations. Learning robust semantic representation in latent spaces remains a challenge. In this paper, we propose a novel semi-supervised learning framework to learn vital attributes in medical images, which constructs generalized representation from diverse semantics to realize medical image segmentation. We first build a self-supervised learning part that achieves context recovery by reconstructing space and intensity of medical images, which conduct semantic representation for feature maps. Subsequently, we combine semantic-rich feature maps and utilize simple linear semantic transformation to convert them into image segmentation. The proposed framework was tested using five medical segmentation datasets. Quantitative assessments indicate the highest scores of our method on IXI (73.78%), ScaF (47.50%), COVID-19-Seg (50.72%), PC-Seg (65.06%), and Brain-MR (72.63%) datasets. Finally, we compared our method with the latest semi-supervised learning methods and obtained 77.15% and 75.22% DSC values, respectively, ranking first on two representative datasets. The experimental results not only proved that the proposed linear semantic transformation was effectively applied to medical image segmentation, but also presented its simplicity and ease-of-use to pursue robust segmentation in semi-supervised learning. Our code is now open at: https://github.com/QingYunA/Linear-Semantic-Transformation-for-Semi-Supervised-Medical-Image-Segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
堆起的石头完成签到 ,获得积分10
刚刚
刚刚
刚刚
1秒前
1秒前
hping发布了新的文献求助10
2秒前
豆豆发布了新的文献求助10
2秒前
CodeCraft应助甘博采纳,获得10
2秒前
清爽乐菱应助wq采纳,获得30
2秒前
汉堡包应助甘博采纳,获得10
2秒前
3秒前
孙了了完成签到,获得积分10
4秒前
4秒前
青蛙公主发布了新的文献求助10
4秒前
553599712发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
李健应助biangbiangmian采纳,获得10
6秒前
renyun完成签到,获得积分10
7秒前
7秒前
7秒前
熊猫完成签到,获得积分10
7秒前
wkz发布了新的文献求助30
8秒前
PanCiro发布了新的文献求助10
8秒前
178181发布了新的文献求助20
9秒前
9秒前
虚幻青曼发布了新的文献求助10
9秒前
9秒前
聪慧芷巧发布了新的文献求助10
9秒前
9秒前
橘子发布了新的文献求助10
10秒前
邓艳梅发布了新的文献求助10
10秒前
11秒前
深情安青应助烤番薯采纳,获得10
12秒前
叶子姑凉发布了新的文献求助10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
豆豆完成签到,获得积分10
14秒前
Harry发布了新的文献求助10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979332
求助须知:如何正确求助?哪些是违规求助? 3523278
关于积分的说明 11216934
捐赠科研通 3260722
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878862
科研通“疑难数据库(出版商)”最低求助积分说明 807113