Linear semantic transformation for semi-supervised medical image segmentation

计算机科学 语义学(计算机科学) 转化(遗传学) 人工智能 分割 特征(语言学) 背景(考古学) 代表(政治) 图像分割 特征学习 监督学习 模式识别(心理学) 机器学习 人工神经网络 政治学 生物 语言学 法学 程序设计语言 化学 生物化学 古生物学 哲学 基因 政治
作者
Cheng Chen,Yunqing Chen,Xiaoheng Li,Huansheng Ning,Ruoxiu Xiao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:173: 108331-108331 被引量:5
标识
DOI:10.1016/j.compbiomed.2024.108331
摘要

Medical image segmentation is a focus research and foundation in developing intelligent medical systems. Recently, deep learning for medical image segmentation has become a standard process and succeeded significantly, promoting the development of reconstruction, and surgical planning of disease diagnosis. However, semantic learning is often inefficient owing to the lack of supervision of feature maps, resulting in that high-quality segmentation models always rely on numerous and accurate data annotations. Learning robust semantic representation in latent spaces remains a challenge. In this paper, we propose a novel semi-supervised learning framework to learn vital attributes in medical images, which constructs generalized representation from diverse semantics to realize medical image segmentation. We first build a self-supervised learning part that achieves context recovery by reconstructing space and intensity of medical images, which conduct semantic representation for feature maps. Subsequently, we combine semantic-rich feature maps and utilize simple linear semantic transformation to convert them into image segmentation. The proposed framework was tested using five medical segmentation datasets. Quantitative assessments indicate the highest scores of our method on IXI (73.78%), ScaF (47.50%), COVID-19-Seg (50.72%), PC-Seg (65.06%), and Brain-MR (72.63%) datasets. Finally, we compared our method with the latest semi-supervised learning methods and obtained 77.15% and 75.22% DSC values, respectively, ranking first on two representative datasets. The experimental results not only proved that the proposed linear semantic transformation was effectively applied to medical image segmentation, but also presented its simplicity and ease-of-use to pursue robust segmentation in semi-supervised learning. Our code is now open at: https://github.com/QingYunA/Linear-Semantic-Transformation-for-Semi-Supervised-Medical-Image-Segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Daiys完成签到,获得积分10
1秒前
可爱的函函应助徐炎采纳,获得10
1秒前
1秒前
Lucas应助理li采纳,获得10
1秒前
莫里完成签到,获得积分10
1秒前
未明的感觉完成签到,获得积分10
2秒前
LHX完成签到,获得积分10
2秒前
DDD完成签到,获得积分10
2秒前
3秒前
sf发布了新的文献求助20
3秒前
紫薰完成签到,获得积分10
3秒前
3秒前
3秒前
马儿完成签到,获得积分10
4秒前
5秒前
yangsir完成签到,获得积分10
5秒前
sys完成签到,获得积分10
6秒前
传奇3应助开心的西瓜采纳,获得10
7秒前
kk99123应助刘岩采纳,获得10
7秒前
zp发布了新的文献求助10
7秒前
Aria完成签到,获得积分10
7秒前
8秒前
领导范儿应助xiaoju采纳,获得10
8秒前
南宫书瑶完成签到,获得积分10
8秒前
酸菜完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
mk完成签到,获得积分10
10秒前
深情的大碗完成签到 ,获得积分10
10秒前
一崽完成签到,获得积分10
11秒前
酸菜发布了新的文献求助10
11秒前
光电效应完成签到,获得积分10
11秒前
陆帅帅他义父完成签到,获得积分10
12秒前
12秒前
123456789完成签到,获得积分20
12秒前
12秒前
活泼的蘑菇完成签到 ,获得积分10
12秒前
FashionBoy应助qhd采纳,获得10
13秒前
王东完成签到,获得积分10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5348506
求助须知:如何正确求助?哪些是违规求助? 4482490
关于积分的说明 13951537
捐赠科研通 4381354
什么是DOI,文献DOI怎么找? 2407318
邀请新用户注册赠送积分活动 1399940
关于科研通互助平台的介绍 1373214