Neighbor-Guided Pseudo-Label Generation and Refinement for Single-Frame Supervised Temporal Action Localization

计算机科学 人工智能 模式识别(心理学) 编码器 最近邻搜索 k-最近邻算法 帧(网络) 特征向量 特征(语言学) 余弦相似度 电信 语言学 哲学 操作系统
作者
Guozhang Li,De Cheng,Nannan Wang,Jie Li,Xinbo Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2419-2430 被引量:3
标识
DOI:10.1109/tip.2024.3378477
摘要

Due to the sparse single-frame annotations, current Single-Frame Temporal Action Localization (SF-TAL) methods generally employ threshold-based pseudo-label generation strategies. However, these approaches suffer from inefficient data utilization, as only parts of unlabeled frames with confidence scores surpassing a predefined threshold are selected for training. Moreover, the variability of single-frame annotations and unreliable model predictions introduce pseudo-label noise. To address these challenges, we propose two strategies by using the relationship of the video segments with their neighbors': 1) temporal neighbor-guided soft pseudo-label generation (TNPG); and 2) semantic neighbor-guided pseudo-label refinement (SNPR). TNPG utilizes a local-global self-attention mechanism in a transformer encoder to capture temporal neighbor information while focusing on the whole video. Then the generated self-attention map is multiplied by the network predictions to propagate information between labeled and unlabeled frames, and produce soft pseudo-label for all segments. Despite this, label noise persists due to unreliable model predictions. To mitigate this, SNPR refines pseudo-labels based on the assumption that predictions should resemble their semantic nearest neighbors'. Specifically, we search for semantic nearest neighbors of each video segment by cosine similarity in the feature space. Then the refined soft pseudo-labels can be obtained by a weight combination of the original pseudo-label and the semantic nearest neighbors'. Finally, the model can be trained with the refined pseudo-labels, and the performance has been greatly improved. Comprehensive experimental results on different benchmarks show that we achieve state-of-the-art performances on THUMOS14, ActivityNet1.2, and ActivityNet1.3 datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卢西奥完成签到,获得积分10
1秒前
华仔应助鳗鱼又槐采纳,获得10
2秒前
Stitch应助yanghui采纳,获得10
3秒前
薰硝壤应助易安采纳,获得100
6秒前
阿尧完成签到 ,获得积分10
7秒前
8秒前
9秒前
科研通AI2S应助完美的香露采纳,获得10
10秒前
linluo发布了新的文献求助10
10秒前
寒冷荧荧完成签到,获得积分10
12秒前
12秒前
kerguelen完成签到,获得积分10
15秒前
15秒前
16秒前
等待的剑身完成签到,获得积分10
17秒前
18秒前
18秒前
果果完成签到,获得积分10
19秒前
林林发布了新的文献求助10
19秒前
齐安客发布了新的文献求助10
20秒前
CipherSage应助yoyo采纳,获得10
20秒前
风中的丝袜完成签到,获得积分10
20秒前
萍萍完成签到 ,获得积分10
21秒前
心心完成签到,获得积分20
22秒前
22秒前
无花果应助曾经阁采纳,获得10
24秒前
24秒前
爆米花应助llzuo采纳,获得10
25秒前
25秒前
姽婳wy发布了新的文献求助10
27秒前
万里发布了新的文献求助10
27秒前
zero完成签到,获得积分10
28秒前
动人的ccc完成签到,获得积分10
28秒前
隐形曼青应助葳蕤采纳,获得10
30秒前
31秒前
积极慕梅应助JIE采纳,获得10
32秒前
不买版权你出什么成果完成签到 ,获得积分10
32秒前
Wang发布了新的文献求助10
32秒前
落寞的妖妖完成签到,获得积分10
33秒前
33秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140918
求助须知:如何正确求助?哪些是违规求助? 2791878
关于积分的说明 7800737
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302404
科研通“疑难数据库(出版商)”最低求助积分说明 626548
版权声明 601226