光催化
铁酸锌
纳米颗粒
锌
材料科学
铁氧体(磁铁)
阿莫西林
分解
冶金
化学
纳米技术
复合材料
催化作用
有机化学
抗生素
生物化学
作者
Aya Jezzini,Yujin Chen,Anne Davidson,Gilles Wallez,Tayssir Hamieh,Joumana Toufaily
出处
期刊:Crystals
[MDPI AG]
日期:2024-03-21
卷期号:14 (3): 291-291
被引量:2
标识
DOI:10.3390/cryst14030291
摘要
Catalysts enriched in Zinc ferrite (ZFO) were synthesized using coprecipitation and hydrothermal methods. Mixtures of crystalline nanoparticles (ZFO and α-Fe2O3, several allotropic varieties of FeO) were characterized by various techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM, SEM), N2 sorption, UV-visible spectrophotometry (UV-Vis) and X-ray photoelectron spectroscopy (XPS). After detailed characterizations, the catalytic performance of the solids (1 g/L) in the degradation of amoxicillin (AMX) (10 mg/L) as an antibiotic pollutant in water was evaluated. In addition, we used air as the oxygen source and adjusted the pH to 5.0. Consequently, the catalysts obtained via the hydrothermal method HT-ZFO had a high activity (100% of AMX removal in less than 100 min when an LED (75 W) light was used) compared to a similar mixture of oxides with graphene HT-ZFO-GO (a longer time of 150 min) that was necessary for the complete degradation of AMX. Impregnation with an aqueous solution containing 80 mg of GO obtained using Hummer’s method, reduced into RGO by an ultrasound treatment, enhances the initial reaction rate but is associated with a prolonged time for complete AMX removal (10 ppm in water) that we attribute to its spontaneous corrosion.
科研通智能强力驱动
Strongly Powered by AbleSci AI