Crops Leaf Disease Recognition From Digital and RS Imaging Using Fusion of Multi Self-Attention RBNet Deep Architectures and Modified Dragonfly Optimization

计算机科学 高光谱成像 人工智能 深度学习 过程(计算) 模式识别(心理学) 机器学习 操作系统
作者
Irfan Haider,Muhammad Attique Khan,Muhammad Nazir,Ameer Hamza,Omar Alqahtani,M. Turki-Hadj Alouane,Anum Masood
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 7260-7277 被引量:3
标识
DOI:10.1109/jstars.2024.3378298
摘要

Globally, pests and plant diseases severely threaten forestry and agriculture. Plant protection could be substantially enhanced by using non-contact, extremely effective, and reasonably priced techniques for identifying and tracking pests and plant diseases across large geographic areas. Precision agriculture is the study of using other technologies, such as hyperspectral remote sensing (RS), to increase cultivation instead of traditional agricultural methods with less negative environmental effects. In this work, we proposed a novel deep-learning architecture and optimization algorithm for crop leaf disease recognition. In the initial step, a multilevel contrast enhancement technique is proposed for a better visual of the disease on the leaves of cotton and wheat. After that, we proposed three novel residual block and self-attention mechanisms named 3-RBNet Self, 5-RBNet Self, and 9-RBNet Self. After that, the proposed models are trained on enhanced images and later extracted deep features from the self-attention layer. The 5-RBNET Self and 9-RBNET Self performed well in terms of accuracy and precision rate; therefore, we did not consider the 3-RBNET Self for the next process. The dragonfly optimization algorithm is proposed for the best feature selection and applied to the self-attention features of 5-RBNET Self and 9-RBNET Self models to improve the classification performance further and reduce the computational cost. The proposed method is evaluated on two publically available crop disease images, such as the Cotton, Wheat, and EuroSAT datasets. For both crops, the proposed method obtained a maximum accuracy of 98.60 and 93.90%, respectively, whereas for the EuroSAT, the proposed method obtained an accuracy of 83.10%. Compared to the results with recent techniques, the proposed method shows improved accuracy and precision rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十一发布了新的文献求助10
1秒前
2秒前
lbx发布了新的文献求助10
2秒前
小可爱啵发布了新的文献求助10
3秒前
田様应助妮儿采纳,获得10
4秒前
阿司匹林发布了新的文献求助10
4秒前
小周发布了新的文献求助10
5秒前
5秒前
5秒前
科研通AI2S应助酷炫傲安采纳,获得10
6秒前
6秒前
6秒前
小可爱啵完成签到,获得积分10
7秒前
qq158014169发布了新的文献求助10
7秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
11秒前
浩浩发布了新的文献求助10
11秒前
12秒前
FashionBoy应助93577采纳,获得10
12秒前
12秒前
乐乐应助阿司匹林采纳,获得10
12秒前
13秒前
23发布了新的文献求助10
14秒前
科研通AI6应助Ralphter采纳,获得30
14秒前
妮儿发布了新的文献求助10
15秒前
yang发布了新的文献求助10
15秒前
科目三应助叶叶叶采纳,获得10
15秒前
JamesPei应助吴漾采纳,获得10
17秒前
19秒前
19秒前
zhang完成签到,获得积分10
19秒前
19秒前
20秒前
小马甲应助111采纳,获得30
20秒前
20秒前
20秒前
22秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648816
求助须知:如何正确求助?哪些是违规求助? 4776730
关于积分的说明 15045622
捐赠科研通 4807687
什么是DOI,文献DOI怎么找? 2571022
邀请新用户注册赠送积分活动 1527707
关于科研通互助平台的介绍 1486609