Crops Leaf Disease Recognition From Digital and RS Imaging Using Fusion of Multi Self-Attention RBNet Deep Architectures and Modified Dragonfly Optimization

计算机科学 高光谱成像 人工智能 深度学习 过程(计算) 模式识别(心理学) 机器学习 操作系统
作者
Irfan Haider,Muhammad Attique Khan,Muhammad Nazir,Ameer Hamza,Omar Alqahtani,M. Turki-Hadj Alouane,Anum Masood
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 7260-7277 被引量:3
标识
DOI:10.1109/jstars.2024.3378298
摘要

Globally, pests and plant diseases severely threaten forestry and agriculture. Plant protection could be substantially enhanced by using non-contact, extremely effective, and reasonably priced techniques for identifying and tracking pests and plant diseases across large geographic areas. Precision agriculture is the study of using other technologies, such as hyperspectral remote sensing (RS), to increase cultivation instead of traditional agricultural methods with less negative environmental effects. In this work, we proposed a novel deep-learning architecture and optimization algorithm for crop leaf disease recognition. In the initial step, a multilevel contrast enhancement technique is proposed for a better visual of the disease on the leaves of cotton and wheat. After that, we proposed three novel residual block and self-attention mechanisms named 3-RBNet Self, 5-RBNet Self, and 9-RBNet Self. After that, the proposed models are trained on enhanced images and later extracted deep features from the self-attention layer. The 5-RBNET Self and 9-RBNET Self performed well in terms of accuracy and precision rate; therefore, we did not consider the 3-RBNET Self for the next process. The dragonfly optimization algorithm is proposed for the best feature selection and applied to the self-attention features of 5-RBNET Self and 9-RBNET Self models to improve the classification performance further and reduce the computational cost. The proposed method is evaluated on two publically available crop disease images, such as the Cotton, Wheat, and EuroSAT datasets. For both crops, the proposed method obtained a maximum accuracy of 98.60 and 93.90%, respectively, whereas for the EuroSAT, the proposed method obtained an accuracy of 83.10%. Compared to the results with recent techniques, the proposed method shows improved accuracy and precision rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
他二舅flying完成签到,获得积分10
1秒前
迷路又夏发布了新的文献求助10
1秒前
花露水发布了新的文献求助10
2秒前
149865完成签到,获得积分10
3秒前
平淡晓夏完成签到,获得积分10
3秒前
童diedie发布了新的文献求助10
3秒前
小龙完成签到,获得积分10
4秒前
早睡早起发布了新的文献求助10
4秒前
瘦瘦寄风完成签到,获得积分10
5秒前
5秒前
乐乐应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得30
6秒前
yyq0927应助科研通管家采纳,获得20
6秒前
wanci应助科研通管家采纳,获得10
6秒前
英俊的铭应助Zhou采纳,获得30
6秒前
tangtang完成签到,获得积分10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
7秒前
iNk应助科研通管家采纳,获得20
7秒前
浮游应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得30
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
归尘应助科研通管家采纳,获得10
8秒前
8秒前
Ava应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
9秒前
打打应助蓝白采纳,获得10
11秒前
浮游应助vocrious采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425117
求助须知:如何正确求助?哪些是违规求助? 4539252
关于积分的说明 14166344
捐赠科研通 4456403
什么是DOI,文献DOI怎么找? 2444186
邀请新用户注册赠送积分活动 1435189
关于科研通互助平台的介绍 1412553