Crops Leaf Disease Recognition From Digital and RS Imaging Using Fusion of Multi Self-Attention RBNet Deep Architectures and Modified Dragonfly Optimization

计算机科学 高光谱成像 人工智能 深度学习 过程(计算) 模式识别(心理学) 机器学习 操作系统
作者
Irfan Haider,Muhammad Attique Khan,Muhammad Nazir,Ameer Hamza,Omar Alqahtani,M. Turki-Hadj Alouane,Anum Masood
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 7260-7277 被引量:3
标识
DOI:10.1109/jstars.2024.3378298
摘要

Globally, pests and plant diseases severely threaten forestry and agriculture. Plant protection could be substantially enhanced by using non-contact, extremely effective, and reasonably priced techniques for identifying and tracking pests and plant diseases across large geographic areas. Precision agriculture is the study of using other technologies, such as hyperspectral remote sensing (RS), to increase cultivation instead of traditional agricultural methods with less negative environmental effects. In this work, we proposed a novel deep-learning architecture and optimization algorithm for crop leaf disease recognition. In the initial step, a multilevel contrast enhancement technique is proposed for a better visual of the disease on the leaves of cotton and wheat. After that, we proposed three novel residual block and self-attention mechanisms named 3-RBNet Self, 5-RBNet Self, and 9-RBNet Self. After that, the proposed models are trained on enhanced images and later extracted deep features from the self-attention layer. The 5-RBNET Self and 9-RBNET Self performed well in terms of accuracy and precision rate; therefore, we did not consider the 3-RBNET Self for the next process. The dragonfly optimization algorithm is proposed for the best feature selection and applied to the self-attention features of 5-RBNET Self and 9-RBNET Self models to improve the classification performance further and reduce the computational cost. The proposed method is evaluated on two publically available crop disease images, such as the Cotton, Wheat, and EuroSAT datasets. For both crops, the proposed method obtained a maximum accuracy of 98.60 and 93.90%, respectively, whereas for the EuroSAT, the proposed method obtained an accuracy of 83.10%. Compared to the results with recent techniques, the proposed method shows improved accuracy and precision rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
萤火发布了新的文献求助10
1秒前
逆时针给minus的求助进行了留言
1秒前
聂先生完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
4秒前
AteeqBaloch发布了新的文献求助10
4秒前
迪娜完成签到,获得积分10
4秒前
5秒前
ZzZz完成签到,获得积分10
5秒前
5秒前
科目三应助学术小白采纳,获得10
5秒前
川流完成签到,获得积分10
5秒前
小白完成签到,获得积分10
5秒前
长情博超完成签到,获得积分10
6秒前
大方的访波完成签到 ,获得积分10
6秒前
苦行僧完成签到 ,获得积分10
6秒前
容容容完成签到,获得积分10
6秒前
7秒前
天竹子发布了新的文献求助10
7秒前
XialianWeng完成签到,获得积分10
7秒前
8秒前
无情的如波完成签到,获得积分10
8秒前
8秒前
9秒前
幸福曼岚完成签到,获得积分10
9秒前
老王发布了新的文献求助10
10秒前
10秒前
10秒前
昵称完成签到,获得积分10
10秒前
爆米花应助11采纳,获得10
11秒前
11秒前
老十七应助无情的如波采纳,获得50
11秒前
zeng发布了新的文献求助10
12秒前
和功耗过高完成签到,获得积分20
12秒前
知性的囧完成签到,获得积分20
13秒前
研友_莫笑旋完成签到,获得积分10
13秒前
ggggglllll发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969398
求助须知:如何正确求助?哪些是违规求助? 3514239
关于积分的说明 11173064
捐赠科研通 3249531
什么是DOI,文献DOI怎么找? 1794934
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804827