亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Crops Leaf Disease Recognition From Digital and RS Imaging Using Fusion of Multi Self-Attention RBNet Deep Architectures and Modified Dragonfly Optimization

计算机科学 高光谱成像 人工智能 深度学习 过程(计算) 模式识别(心理学) 机器学习 操作系统
作者
Irfan Haider,Muhammad Attique Khan,Muhammad Nazir,Ameer Hamza,Omar Alqahtani,M. Turki-Hadj Alouane,Anum Masood
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 7260-7277 被引量:3
标识
DOI:10.1109/jstars.2024.3378298
摘要

Globally, pests and plant diseases severely threaten forestry and agriculture. Plant protection could be substantially enhanced by using non-contact, extremely effective, and reasonably priced techniques for identifying and tracking pests and plant diseases across large geographic areas. Precision agriculture is the study of using other technologies, such as hyperspectral remote sensing (RS), to increase cultivation instead of traditional agricultural methods with less negative environmental effects. In this work, we proposed a novel deep-learning architecture and optimization algorithm for crop leaf disease recognition. In the initial step, a multilevel contrast enhancement technique is proposed for a better visual of the disease on the leaves of cotton and wheat. After that, we proposed three novel residual block and self-attention mechanisms named 3-RBNet Self, 5-RBNet Self, and 9-RBNet Self. After that, the proposed models are trained on enhanced images and later extracted deep features from the self-attention layer. The 5-RBNET Self and 9-RBNET Self performed well in terms of accuracy and precision rate; therefore, we did not consider the 3-RBNET Self for the next process. The dragonfly optimization algorithm is proposed for the best feature selection and applied to the self-attention features of 5-RBNET Self and 9-RBNET Self models to improve the classification performance further and reduce the computational cost. The proposed method is evaluated on two publically available crop disease images, such as the Cotton, Wheat, and EuroSAT datasets. For both crops, the proposed method obtained a maximum accuracy of 98.60 and 93.90%, respectively, whereas for the EuroSAT, the proposed method obtained an accuracy of 83.10%. Compared to the results with recent techniques, the proposed method shows improved accuracy and precision rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研落水狗完成签到,获得积分10
40秒前
44秒前
53秒前
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
1分钟前
熊熊完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
MchemG完成签到,获得积分0
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
2分钟前
2分钟前
who完成签到,获得积分10
2分钟前
who发布了新的文献求助10
2分钟前
3分钟前
量子星尘发布了新的文献求助20
3分钟前
4分钟前
QCB完成签到 ,获得积分10
4分钟前
4分钟前
Vino发布了新的文献求助10
4分钟前
Vino完成签到,获得积分10
4分钟前
5分钟前
Orange应助科研通管家采纳,获得10
5分钟前
Cherie77完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
穆振家完成签到,获得积分10
5分钟前
6分钟前
6分钟前
7分钟前
Axs完成签到,获得积分10
7分钟前
Kevin完成签到,获得积分10
7分钟前
7分钟前
羞涩的傲菡完成签到,获得积分10
7分钟前
量子星尘发布了新的文献求助50
8分钟前
8分钟前
8分钟前
闲逛的木头2完成签到,获得积分20
8分钟前
捉迷藏完成签到,获得积分0
9分钟前
馆长应助科研通管家采纳,获得10
9分钟前
迅速的岩完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596127
求助须知:如何正确求助?哪些是违规求助? 4008212
关于积分的说明 12408971
捐赠科研通 3687127
什么是DOI,文献DOI怎么找? 2032233
邀请新用户注册赠送积分活动 1065470
科研通“疑难数据库(出版商)”最低求助积分说明 950783