Crops Leaf Disease Recognition From Digital and RS Imaging Using Fusion of Multi Self-Attention RBNet Deep Architectures and Modified Dragonfly Optimization

计算机科学 高光谱成像 人工智能 深度学习 过程(计算) 模式识别(心理学) 机器学习 操作系统
作者
Irfan Haider,Muhammad Attique Khan,Muhammad Nazir,Ameer Hamza,Omar Alqahtani,M. Turki-Hadj Alouane,Anum Masood
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 7260-7277 被引量:3
标识
DOI:10.1109/jstars.2024.3378298
摘要

Globally, pests and plant diseases severely threaten forestry and agriculture. Plant protection could be substantially enhanced by using non-contact, extremely effective, and reasonably priced techniques for identifying and tracking pests and plant diseases across large geographic areas. Precision agriculture is the study of using other technologies, such as hyperspectral remote sensing (RS), to increase cultivation instead of traditional agricultural methods with less negative environmental effects. In this work, we proposed a novel deep-learning architecture and optimization algorithm for crop leaf disease recognition. In the initial step, a multilevel contrast enhancement technique is proposed for a better visual of the disease on the leaves of cotton and wheat. After that, we proposed three novel residual block and self-attention mechanisms named 3-RBNet Self, 5-RBNet Self, and 9-RBNet Self. After that, the proposed models are trained on enhanced images and later extracted deep features from the self-attention layer. The 5-RBNET Self and 9-RBNET Self performed well in terms of accuracy and precision rate; therefore, we did not consider the 3-RBNET Self for the next process. The dragonfly optimization algorithm is proposed for the best feature selection and applied to the self-attention features of 5-RBNET Self and 9-RBNET Self models to improve the classification performance further and reduce the computational cost. The proposed method is evaluated on two publically available crop disease images, such as the Cotton, Wheat, and EuroSAT datasets. For both crops, the proposed method obtained a maximum accuracy of 98.60 and 93.90%, respectively, whereas for the EuroSAT, the proposed method obtained an accuracy of 83.10%. Compared to the results with recent techniques, the proposed method shows improved accuracy and precision rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
suhe完成签到,获得积分10
1秒前
bkagyin应助madoudou采纳,获得10
1秒前
zlimu发布了新的文献求助10
3秒前
小净完成签到 ,获得积分10
3秒前
围城发布了新的文献求助10
5秒前
小蘑菇应助Iceberg采纳,获得10
7秒前
7秒前
领导范儿应助义气萝卜头采纳,获得10
7秒前
8秒前
8秒前
9秒前
天天发布了新的文献求助10
11秒前
12秒前
研友_ZAxj7n发布了新的文献求助10
12秒前
mtw发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
16秒前
丁力伟完成签到 ,获得积分10
16秒前
20秒前
23秒前
mtw完成签到,获得积分10
23秒前
小蘑菇应助wz采纳,获得10
23秒前
完美世界应助忧虑的孤萍采纳,获得10
24秒前
忐忑的阑香完成签到,获得积分10
25秒前
在水一方应助tang采纳,获得10
26秒前
重要的向南完成签到,获得积分10
27秒前
28秒前
29秒前
nenoaowu发布了新的文献求助10
29秒前
FashionBoy应助nenoaowu采纳,获得30
33秒前
神内打工人完成签到 ,获得积分10
34秒前
blackcat1210发布了新的文献求助10
39秒前
研友_VZG7GZ应助uuinn采纳,获得10
39秒前
xiaoyujiang发布了新的文献求助10
41秒前
天天快乐应助爱上写文章采纳,获得10
42秒前
独特大米发布了新的文献求助20
42秒前
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976235
求助须知:如何正确求助?哪些是违规求助? 3520399
关于积分的说明 11203166
捐赠科研通 3256989
什么是DOI,文献DOI怎么找? 1798580
邀请新用户注册赠送积分活动 877738
科研通“疑难数据库(出版商)”最低求助积分说明 806516