Crops Leaf Disease Recognition From Digital and RS Imaging Using Fusion of Multi Self-Attention RBNet Deep Architectures and Modified Dragonfly Optimization

计算机科学 高光谱成像 人工智能 深度学习 过程(计算) 模式识别(心理学) 机器学习 操作系统
作者
Irfan Haider,Muhammad Attique Khan,Muhammad Nazir,Ameer Hamza,Omar Alqahtani,M. Turki-Hadj Alouane,Anum Masood
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 7260-7277 被引量:3
标识
DOI:10.1109/jstars.2024.3378298
摘要

Globally, pests and plant diseases severely threaten forestry and agriculture. Plant protection could be substantially enhanced by using non-contact, extremely effective, and reasonably priced techniques for identifying and tracking pests and plant diseases across large geographic areas. Precision agriculture is the study of using other technologies, such as hyperspectral remote sensing (RS), to increase cultivation instead of traditional agricultural methods with less negative environmental effects. In this work, we proposed a novel deep-learning architecture and optimization algorithm for crop leaf disease recognition. In the initial step, a multilevel contrast enhancement technique is proposed for a better visual of the disease on the leaves of cotton and wheat. After that, we proposed three novel residual block and self-attention mechanisms named 3-RBNet Self, 5-RBNet Self, and 9-RBNet Self. After that, the proposed models are trained on enhanced images and later extracted deep features from the self-attention layer. The 5-RBNET Self and 9-RBNET Self performed well in terms of accuracy and precision rate; therefore, we did not consider the 3-RBNET Self for the next process. The dragonfly optimization algorithm is proposed for the best feature selection and applied to the self-attention features of 5-RBNET Self and 9-RBNET Self models to improve the classification performance further and reduce the computational cost. The proposed method is evaluated on two publically available crop disease images, such as the Cotton, Wheat, and EuroSAT datasets. For both crops, the proposed method obtained a maximum accuracy of 98.60 and 93.90%, respectively, whereas for the EuroSAT, the proposed method obtained an accuracy of 83.10%. Compared to the results with recent techniques, the proposed method shows improved accuracy and precision rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无极微光应助白桃味的夏采纳,获得20
1秒前
万能图书馆应助xingxing采纳,获得10
2秒前
2秒前
宁幼萱发布了新的文献求助30
2秒前
狗子完成签到,获得积分10
2秒前
优秀以寒完成签到,获得积分20
2秒前
阿关完成签到,获得积分10
3秒前
传奇3应助Windsyang采纳,获得10
4秒前
JamesPei应助wby0313采纳,获得10
4秒前
王金阳完成签到,获得积分10
4秒前
5秒前
Liens发布了新的文献求助10
6秒前
超越完成签到,获得积分10
6秒前
酷炫凌香完成签到,获得积分20
7秒前
7秒前
7秒前
yimu发布了新的文献求助10
7秒前
各方面发布了新的文献求助30
7秒前
安静一曲完成签到 ,获得积分10
8秒前
大梦发布了新的文献求助10
8秒前
9秒前
todaay完成签到,获得积分20
10秒前
zhang-gentle完成签到,获得积分10
10秒前
11秒前
科研通AI2S应助zhou采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
orixero应助Felix采纳,获得10
12秒前
awst发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
14秒前
大模型应助梦断西楼采纳,获得10
15秒前
gnufgg完成签到,获得积分10
15秒前
Y哈哈哈给Y哈哈哈的求助进行了留言
15秒前
SciGPT应助大梦采纳,获得10
15秒前
橙子陈发布了新的文献求助10
16秒前
Jc发布了新的文献求助10
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610753
求助须知:如何正确求助?哪些是违规求助? 4695233
关于积分的说明 14886085
捐赠科研通 4723350
什么是DOI,文献DOI怎么找? 2545246
邀请新用户注册赠送积分活动 1510017
关于科研通互助平台的介绍 1473110