Crops Leaf Disease Recognition From Digital and RS Imaging Using Fusion of Multi Self-Attention RBNet Deep Architectures and Modified Dragonfly Optimization

计算机科学 高光谱成像 人工智能 深度学习 过程(计算) 模式识别(心理学) 机器学习 操作系统
作者
Irfan Haider,Muhammad Attique Khan,Muhammad Nazir,Ameer Hamza,Omar Alqahtani,M. Turki-Hadj Alouane,Anum Masood
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 7260-7277 被引量:3
标识
DOI:10.1109/jstars.2024.3378298
摘要

Globally, pests and plant diseases severely threaten forestry and agriculture. Plant protection could be substantially enhanced by using non-contact, extremely effective, and reasonably priced techniques for identifying and tracking pests and plant diseases across large geographic areas. Precision agriculture is the study of using other technologies, such as hyperspectral remote sensing (RS), to increase cultivation instead of traditional agricultural methods with less negative environmental effects. In this work, we proposed a novel deep-learning architecture and optimization algorithm for crop leaf disease recognition. In the initial step, a multilevel contrast enhancement technique is proposed for a better visual of the disease on the leaves of cotton and wheat. After that, we proposed three novel residual block and self-attention mechanisms named 3-RBNet Self, 5-RBNet Self, and 9-RBNet Self. After that, the proposed models are trained on enhanced images and later extracted deep features from the self-attention layer. The 5-RBNET Self and 9-RBNET Self performed well in terms of accuracy and precision rate; therefore, we did not consider the 3-RBNET Self for the next process. The dragonfly optimization algorithm is proposed for the best feature selection and applied to the self-attention features of 5-RBNET Self and 9-RBNET Self models to improve the classification performance further and reduce the computational cost. The proposed method is evaluated on two publically available crop disease images, such as the Cotton, Wheat, and EuroSAT datasets. For both crops, the proposed method obtained a maximum accuracy of 98.60 and 93.90%, respectively, whereas for the EuroSAT, the proposed method obtained an accuracy of 83.10%. Compared to the results with recent techniques, the proposed method shows improved accuracy and precision rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李rh发布了新的文献求助10
刚刚
刚刚
wwy应助欣欣采纳,获得20
1秒前
学霸宇大王完成签到,获得积分10
1秒前
斑马发布了新的文献求助10
1秒前
大模型应助xyg采纳,获得10
2秒前
2秒前
JamesPei应助xyg采纳,获得10
2秒前
小二郎应助Summer采纳,获得10
2秒前
2秒前
2秒前
kkeeaa发布了新的文献求助10
2秒前
烟花应助清心采纳,获得10
2秒前
沈宸完成签到,获得积分10
2秒前
慕青应助南攻采纳,获得10
2秒前
小蘑菇应助张振采纳,获得10
2秒前
WY完成签到,获得积分10
3秒前
充电宝应助Cenhuan采纳,获得10
3秒前
华仔应助风中白云采纳,获得10
3秒前
4秒前
4秒前
Iridesent0v0发布了新的文献求助10
4秒前
赘婿应助孙朱珠采纳,获得10
4秒前
不够萌发布了新的文献求助10
5秒前
垃圾筐完成签到,获得积分10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
愉快秀发布了新的文献求助10
6秒前
朴实的小萱完成签到 ,获得积分10
6秒前
涵忆发布了新的文献求助10
6秒前
wanci应助凯凯采纳,获得10
7秒前
小二郎应助凯凯采纳,获得10
7秒前
7秒前
Ava应助凯凯采纳,获得10
7秒前
天天快乐应助凯凯采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661010
求助须知:如何正确求助?哪些是违规求助? 4836679
关于积分的说明 15093101
捐赠科研通 4819724
什么是DOI,文献DOI怎么找? 2579492
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492616