Crops Leaf Disease Recognition From Digital and RS Imaging Using Fusion of Multi Self-Attention RBNet Deep Architectures and Modified Dragonfly Optimization

计算机科学 高光谱成像 人工智能 深度学习 过程(计算) 模式识别(心理学) 机器学习 操作系统
作者
Irfan Haider,Muhammad Attique Khan,Muhammad Nazir,Ameer Hamza,Omar Alqahtani,M. Turki-Hadj Alouane,Anum Masood
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 7260-7277 被引量:3
标识
DOI:10.1109/jstars.2024.3378298
摘要

Globally, pests and plant diseases severely threaten forestry and agriculture. Plant protection could be substantially enhanced by using non-contact, extremely effective, and reasonably priced techniques for identifying and tracking pests and plant diseases across large geographic areas. Precision agriculture is the study of using other technologies, such as hyperspectral remote sensing (RS), to increase cultivation instead of traditional agricultural methods with less negative environmental effects. In this work, we proposed a novel deep-learning architecture and optimization algorithm for crop leaf disease recognition. In the initial step, a multilevel contrast enhancement technique is proposed for a better visual of the disease on the leaves of cotton and wheat. After that, we proposed three novel residual block and self-attention mechanisms named 3-RBNet Self, 5-RBNet Self, and 9-RBNet Self. After that, the proposed models are trained on enhanced images and later extracted deep features from the self-attention layer. The 5-RBNET Self and 9-RBNET Self performed well in terms of accuracy and precision rate; therefore, we did not consider the 3-RBNET Self for the next process. The dragonfly optimization algorithm is proposed for the best feature selection and applied to the self-attention features of 5-RBNET Self and 9-RBNET Self models to improve the classification performance further and reduce the computational cost. The proposed method is evaluated on two publically available crop disease images, such as the Cotton, Wheat, and EuroSAT datasets. For both crops, the proposed method obtained a maximum accuracy of 98.60 and 93.90%, respectively, whereas for the EuroSAT, the proposed method obtained an accuracy of 83.10%. Compared to the results with recent techniques, the proposed method shows improved accuracy and precision rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WJ完成签到,获得积分10
刚刚
李健应助侦察兵采纳,获得10
1秒前
无花果应助子川采纳,获得10
2秒前
2秒前
爆米花应助龙歪歪采纳,获得10
4秒前
5秒前
5秒前
xxxqqq完成签到,获得积分10
6秒前
虚拟的觅山完成签到,获得积分10
7秒前
slj完成签到,获得积分10
8秒前
科研爱好者完成签到 ,获得积分10
8秒前
9秒前
ywang发布了新的文献求助10
10秒前
koial完成签到 ,获得积分10
11秒前
苏卿应助小xy采纳,获得10
11秒前
侦察兵发布了新的文献求助10
13秒前
14秒前
yyyy发布了新的文献求助50
14秒前
皇帝的床帘完成签到,获得积分10
15秒前
GXY完成签到,获得积分10
17秒前
xiuwen发布了新的文献求助10
17秒前
啦啦啦完成签到,获得积分10
17秒前
Umwandlung完成签到,获得积分10
19秒前
gorgeousgaga完成签到,获得积分10
19秒前
20秒前
20秒前
科研通AI5应助ipeakkka采纳,获得10
21秒前
852应助章家炜采纳,获得10
22秒前
Gauss应助张小汉采纳,获得30
24秒前
嘻嘻发布了新的文献求助10
24秒前
杰哥完成签到 ,获得积分10
25秒前
Ava应助赵小可可可可采纳,获得10
25秒前
科研通AI5应助kento采纳,获得30
26秒前
nkmenghan发布了新的文献求助10
27秒前
30秒前
redondo10完成签到,获得积分0
31秒前
32秒前
乔qiao发布了新的文献求助30
35秒前
WZ0904发布了新的文献求助10
36秒前
poegtam完成签到,获得积分10
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849