Crops Leaf Disease Recognition From Digital and RS Imaging Using Fusion of Multi Self-Attention RBNet Deep Architectures and Modified Dragonfly Optimization

计算机科学 高光谱成像 人工智能 深度学习 过程(计算) 模式识别(心理学) 机器学习 操作系统
作者
Irfan Haider,Muhammad Attique Khan,Muhammad Nazir,Ameer Hamza,Omar Alqahtani,M. Turki-Hadj Alouane,Anum Masood
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 7260-7277 被引量:3
标识
DOI:10.1109/jstars.2024.3378298
摘要

Globally, pests and plant diseases severely threaten forestry and agriculture. Plant protection could be substantially enhanced by using non-contact, extremely effective, and reasonably priced techniques for identifying and tracking pests and plant diseases across large geographic areas. Precision agriculture is the study of using other technologies, such as hyperspectral remote sensing (RS), to increase cultivation instead of traditional agricultural methods with less negative environmental effects. In this work, we proposed a novel deep-learning architecture and optimization algorithm for crop leaf disease recognition. In the initial step, a multilevel contrast enhancement technique is proposed for a better visual of the disease on the leaves of cotton and wheat. After that, we proposed three novel residual block and self-attention mechanisms named 3-RBNet Self, 5-RBNet Self, and 9-RBNet Self. After that, the proposed models are trained on enhanced images and later extracted deep features from the self-attention layer. The 5-RBNET Self and 9-RBNET Self performed well in terms of accuracy and precision rate; therefore, we did not consider the 3-RBNET Self for the next process. The dragonfly optimization algorithm is proposed for the best feature selection and applied to the self-attention features of 5-RBNET Self and 9-RBNET Self models to improve the classification performance further and reduce the computational cost. The proposed method is evaluated on two publically available crop disease images, such as the Cotton, Wheat, and EuroSAT datasets. For both crops, the proposed method obtained a maximum accuracy of 98.60 and 93.90%, respectively, whereas for the EuroSAT, the proposed method obtained an accuracy of 83.10%. Compared to the results with recent techniques, the proposed method shows improved accuracy and precision rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bioli应助超帅天曼采纳,获得10
1秒前
2秒前
3秒前
所所应助yyfer采纳,获得10
3秒前
Soledad完成签到 ,获得积分10
4秒前
111完成签到,获得积分10
4秒前
川川完成签到,获得积分10
4秒前
斯文败类应助sywkamw采纳,获得10
5秒前
龙龖龘完成签到,获得积分10
5秒前
wanghuihui发布了新的文献求助10
7秒前
cola发布了新的文献求助10
7秒前
10秒前
10秒前
hsp发布了新的文献求助30
12秒前
13秒前
可靠松鼠完成签到,获得积分10
16秒前
顾末完成签到,获得积分10
16秒前
彭于晏应助九月鹰飞采纳,获得10
17秒前
wanghuihui完成签到,获得积分10
17秒前
dynamoo举报朱敏求助涉嫌违规
17秒前
wddytc发布了新的文献求助10
18秒前
IyGnauH完成签到 ,获得积分10
19秒前
JC完成签到,获得积分10
21秒前
21秒前
liuHX完成签到,获得积分10
23秒前
啊呆哦完成签到,获得积分10
24秒前
JamesPei应助内向忆山采纳,获得10
25秒前
yunidesuuu完成签到,获得积分10
26秒前
PegsZI关注了科研通微信公众号
26秒前
啊呆哦发布了新的文献求助10
26秒前
所所应助cwm采纳,获得10
31秒前
rjx完成签到,获得积分20
35秒前
土豪的飞荷完成签到 ,获得积分10
35秒前
乐乐应助cc采纳,获得10
36秒前
36秒前
浮游应助zxdw采纳,获得10
36秒前
李爱国应助不爱科研采纳,获得10
37秒前
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109215
求助须知:如何正确求助?哪些是违规求助? 4317888
关于积分的说明 13453024
捐赠科研通 4147801
什么是DOI,文献DOI怎么找? 2272874
邀请新用户注册赠送积分活动 1275041
关于科研通互助平台的介绍 1213218