Circumventing drug resistance in gastric cancer: A spatial multi-omics exploration of chemo and immuno-therapeutic response dynamics

癌症 背景(考古学) 抗药性 组学 精密医学 药品 计算生物学 医学 生物信息学 生物 药理学 内科学 病理 古生物学 微生物学
作者
Gang Che,Jie Yin,Wankun Wang,Yandong Luo,Yiran Chen,Xiongfei Yu,Haiyong Wang,Xiaosun Liu,Zhendong Chen,Xing Wang,Yu Chen,X Wang,Kaicheng Tang,Jiao Tang,Wei Shao,Chao Wu,Jianpeng Sheng,Qing Li,Jian Liu
出处
期刊:Drug Resistance Updates [Elsevier]
卷期号:74: 101080-101080 被引量:44
标识
DOI:10.1016/j.drup.2024.101080
摘要

Gastric Cancer (GC) characteristically exhibits heterogeneous responses to treatment, particularly in relation to immuno plus chemo therapy, necessitating a precision medicine approach. This study is centered around delineating the cellular and molecular underpinnings of drug resistance in this context. We undertook a comprehensive multi-omics exploration of postoperative tissues from GC patients undergoing the chemo and immuno-treatment regimen. Concurrently, an image deep learning model was developed to predict treatment responsiveness. Our initial findings associate apical membrane cells with resistance to fluorouracil and oxaliplatin, critical constituents of the therapy. Further investigation into this cell population shed light on substantial interactions with resident macrophages, underscoring the role of intercellular communication in shaping treatment resistance. Subsequent ligand-receptor analysis unveiled specific molecular dialogues, most notably TGFB1-HSPB1 and LTF-S100A14, offering insights into potential signaling pathways implicated in resistance. Our SVM model, incorporating these multi-omics and spatial data, demonstrated significant predictive power, with AUC values of 0.93 and 0.84 in the exploration and validation cohorts respectively. Hence, our results underscore the utility of multi-omics and spatial data in modeling treatment response. Our integrative approach, amalgamating mIHC assays, feature extraction, and machine learning, successfully unraveled the complex cellular interplay underlying drug resistance. This robust predictive model may serve as a valuable tool for personalizing therapeutic strategies and enhancing treatment outcomes in gastric cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俊逸香岚发布了新的文献求助10
刚刚
张兰兰发布了新的文献求助10
1秒前
毕业王发布了新的文献求助10
1秒前
www发布了新的文献求助10
1秒前
2秒前
y741应助研友_pnx7JL采纳,获得50
3秒前
油炸西兰花完成签到,获得积分10
3秒前
3秒前
3秒前
NN发布了新的文献求助10
3秒前
4秒前
SICAU_ZY完成签到,获得积分10
4秒前
慕青应助huzi2009采纳,获得10
4秒前
4秒前
水水完成签到 ,获得积分10
4秒前
cxxxx应助accept采纳,获得10
4秒前
pjwl完成签到,获得积分10
4秒前
5秒前
5秒前
焦糖布丁完成签到 ,获得积分10
6秒前
快乐的猪发布了新的文献求助10
6秒前
6秒前
思源应助Haoziyu采纳,获得10
6秒前
sunsunsun完成签到,获得积分10
6秒前
6秒前
orixero应助懒得取名字采纳,获得10
6秒前
applepie发布了新的文献求助10
7秒前
7秒前
7秒前
王哈哈发布了新的文献求助10
7秒前
7秒前
wangxiaoqing完成签到,获得积分20
8秒前
8秒前
Hello应助wang采纳,获得10
9秒前
偏遇发布了新的文献求助10
9秒前
hxhw发布了新的文献求助10
9秒前
张书源发布了新的文献求助10
9秒前
听话的道消完成签到 ,获得积分10
9秒前
李健的小迷弟应助raycy采纳,获得10
9秒前
时尚友安发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721