Circumventing drug resistance in gastric cancer: A spatial multi-omics exploration of chemo and immuno-therapeutic response dynamics

癌症 背景(考古学) 抗药性 组学 精密医学 药品 计算生物学 医学 生物信息学 生物 药理学 内科学 病理 微生物学 古生物学
作者
Gang Che,Jie Yin,Wankun Wang,Yandong Luo,Yiran Chen,Xiongfei Yu,Haiyong Wang,Xiaosun Liu,Zhendong Chen,Xing Wang,Yu Chen,X Wang,Kaicheng Tang,Jiao Tang,Wei Shao,Chao Wu,Jianpeng Sheng,Qing Li,Jian Liu
出处
期刊:Drug Resistance Updates [Elsevier]
卷期号:74: 101080-101080 被引量:8
标识
DOI:10.1016/j.drup.2024.101080
摘要

Gastric Cancer (GC) characteristically exhibits heterogeneous responses to treatment, particularly in relation to immuno plus chemo therapy, necessitating a precision medicine approach. This study is centered around delineating the cellular and molecular underpinnings of drug resistance in this context. We undertook a comprehensive multi-omics exploration of postoperative tissues from GC patients undergoing the chemo and immuno-treatment regimen. Concurrently, an image deep learning model was developed to predict treatment responsiveness. Our initial findings associate apical membrane cells with resistance to fluorouracil and oxaliplatin, critical constituents of the therapy. Further investigation into this cell population shed light on substantial interactions with resident macrophages, underscoring the role of intercellular communication in shaping treatment resistance. Subsequent ligand-receptor analysis unveiled specific molecular dialogues, most notably TGFB1-HSPB1 and LTF-S100A14, offering insights into potential signaling pathways implicated in resistance. Our SVM model, incorporating these multi-omics and spatial data, demonstrated significant predictive power, with AUC values of 0.93 and 0.84 in the exploration and validation cohorts respectively. Hence, our results underscore the utility of multi-omics and spatial data in modeling treatment response. Our integrative approach, amalgamating mIHC assays, feature extraction, and machine learning, successfully unraveled the complex cellular interplay underlying drug resistance. This robust predictive model may serve as a valuable tool for personalizing therapeutic strategies and enhancing treatment outcomes in gastric cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
3秒前
科目三应助ZJ采纳,获得10
3秒前
Orange应助Metakuro采纳,获得10
3秒前
迷路颜演完成签到,获得积分20
4秒前
5秒前
SciGPT应助聂学雨采纳,获得10
5秒前
5秒前
思源应助aaa采纳,获得10
6秒前
大桃发布了新的文献求助30
6秒前
平常的g发布了新的文献求助10
6秒前
6秒前
ding应助无心的青槐采纳,获得10
7秒前
凉城予梦发布了新的文献求助10
9秒前
丘比特应助孙大圣采纳,获得10
9秒前
陈乐宁2024发布了新的文献求助10
9秒前
HAOKEE完成签到,获得积分10
11秒前
11秒前
燕妙之完成签到,获得积分10
11秒前
Jaden完成签到,获得积分10
12秒前
12秒前
m123完成签到,获得积分10
12秒前
PV YTT完成签到,获得积分0
13秒前
韩夏菲完成签到,获得积分10
14秒前
英俊的铭应助yanaftdl采纳,获得20
15秒前
lll发布了新的文献求助10
15秒前
16秒前
凉城予梦完成签到,获得积分10
16秒前
聂学雨发布了新的文献求助10
17秒前
17秒前
神勇秋白完成签到,获得积分10
17秒前
18秒前
19秒前
Jasper应助科研通管家采纳,获得10
19秒前
orixero应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
科隆龙完成签到,获得积分10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135616
求助须知:如何正确求助?哪些是违规求助? 2786482
关于积分的说明 7777675
捐赠科研通 2442483
什么是DOI,文献DOI怎么找? 1298583
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847