Circumventing drug resistance in gastric cancer: A spatial multi-omics exploration of chemo and immuno-therapeutic response dynamics

癌症 背景(考古学) 抗药性 组学 精密医学 药品 计算生物学 医学 生物信息学 生物 药理学 内科学 病理 微生物学 古生物学
作者
Gang Che,Jie Yin,Wankun Wang,Yandong Luo,Yiran Chen,Xiongfei Yu,Haiyong Wang,Xiaosun Liu,Zhendong Chen,Xing Wang,Yu Chen,X Wang,Kaicheng Tang,Jiao Tang,Wei Shao,Chao Wu,Jianpeng Sheng,Qing Li,Jian Liu
出处
期刊:Drug Resistance Updates [Elsevier BV]
卷期号:74: 101080-101080 被引量:35
标识
DOI:10.1016/j.drup.2024.101080
摘要

Gastric Cancer (GC) characteristically exhibits heterogeneous responses to treatment, particularly in relation to immuno plus chemo therapy, necessitating a precision medicine approach. This study is centered around delineating the cellular and molecular underpinnings of drug resistance in this context. We undertook a comprehensive multi-omics exploration of postoperative tissues from GC patients undergoing the chemo and immuno-treatment regimen. Concurrently, an image deep learning model was developed to predict treatment responsiveness. Our initial findings associate apical membrane cells with resistance to fluorouracil and oxaliplatin, critical constituents of the therapy. Further investigation into this cell population shed light on substantial interactions with resident macrophages, underscoring the role of intercellular communication in shaping treatment resistance. Subsequent ligand-receptor analysis unveiled specific molecular dialogues, most notably TGFB1-HSPB1 and LTF-S100A14, offering insights into potential signaling pathways implicated in resistance. Our SVM model, incorporating these multi-omics and spatial data, demonstrated significant predictive power, with AUC values of 0.93 and 0.84 in the exploration and validation cohorts respectively. Hence, our results underscore the utility of multi-omics and spatial data in modeling treatment response. Our integrative approach, amalgamating mIHC assays, feature extraction, and machine learning, successfully unraveled the complex cellular interplay underlying drug resistance. This robust predictive model may serve as a valuable tool for personalizing therapeutic strategies and enhancing treatment outcomes in gastric cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MAYA完成签到 ,获得积分10
刚刚
姜彦乔发布了新的文献求助10
1秒前
乐观蚂蚁发布了新的文献求助30
2秒前
112发布了新的文献求助10
2秒前
务实寻云完成签到,获得积分10
3秒前
3秒前
3秒前
完美世界应助山石二道疤采纳,获得10
3秒前
孤独树叶发布了新的文献求助10
4秒前
Lucas应助葡萄狗采纳,获得10
4秒前
超级Huan完成签到,获得积分10
4秒前
5秒前
无心发布了新的文献求助10
5秒前
共享精神应助凯瑟琳采纳,获得10
6秒前
6秒前
tdtk发布了新的文献求助10
6秒前
6秒前
libra关完成签到 ,获得积分20
7秒前
小白菜发布了新的文献求助10
7秒前
盛清让发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
无奈狗发布了新的文献求助10
11秒前
11秒前
完美世界应助Cuillli采纳,获得10
11秒前
qaqa发布了新的文献求助20
12秒前
朝阳完成签到,获得积分10
12秒前
12秒前
12秒前
研友_ZGRvon完成签到,获得积分0
12秒前
开心市民完成签到,获得积分10
14秒前
14秒前
大胆峻熙完成签到,获得积分20
14秒前
why关闭了why文献求助
15秒前
李健的小迷弟应助李雪瑞采纳,获得10
15秒前
young发布了新的文献求助10
15秒前
马楼发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193933
求助须知:如何正确求助?哪些是违规求助? 4376236
关于积分的说明 13628897
捐赠科研通 4231184
什么是DOI,文献DOI怎么找? 2320812
邀请新用户注册赠送积分活动 1319105
关于科研通互助平台的介绍 1269416