Circumventing drug resistance in gastric cancer: A spatial multi-omics exploration of chemo and immuno-therapeutic response dynamics

癌症 背景(考古学) 抗药性 组学 精密医学 药品 计算生物学 医学 生物信息学 生物 药理学 内科学 病理 微生物学 古生物学
作者
Gang Che,Jie Yin,Wankun Wang,Yandong Luo,Yiran Chen,Xiongfei Yu,Haiyong Wang,Xiaosun Liu,Zhendong Chen,Xing Wang,Yu Chen,X Wang,Kaicheng Tang,Jiao Tang,Wei Shao,Chao Wu,Jianpeng Sheng,Qing Li,Jian Liu
出处
期刊:Drug Resistance Updates [Elsevier]
卷期号:74: 101080-101080 被引量:44
标识
DOI:10.1016/j.drup.2024.101080
摘要

Gastric Cancer (GC) characteristically exhibits heterogeneous responses to treatment, particularly in relation to immuno plus chemo therapy, necessitating a precision medicine approach. This study is centered around delineating the cellular and molecular underpinnings of drug resistance in this context. We undertook a comprehensive multi-omics exploration of postoperative tissues from GC patients undergoing the chemo and immuno-treatment regimen. Concurrently, an image deep learning model was developed to predict treatment responsiveness. Our initial findings associate apical membrane cells with resistance to fluorouracil and oxaliplatin, critical constituents of the therapy. Further investigation into this cell population shed light on substantial interactions with resident macrophages, underscoring the role of intercellular communication in shaping treatment resistance. Subsequent ligand-receptor analysis unveiled specific molecular dialogues, most notably TGFB1-HSPB1 and LTF-S100A14, offering insights into potential signaling pathways implicated in resistance. Our SVM model, incorporating these multi-omics and spatial data, demonstrated significant predictive power, with AUC values of 0.93 and 0.84 in the exploration and validation cohorts respectively. Hence, our results underscore the utility of multi-omics and spatial data in modeling treatment response. Our integrative approach, amalgamating mIHC assays, feature extraction, and machine learning, successfully unraveled the complex cellular interplay underlying drug resistance. This robust predictive model may serve as a valuable tool for personalizing therapeutic strategies and enhancing treatment outcomes in gastric cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素的书琴完成签到,获得积分10
1秒前
yixin发布了新的文献求助10
1秒前
LIUS完成签到,获得积分10
1秒前
dd36完成签到,获得积分10
1秒前
dangniuma完成签到,获得积分10
1秒前
去偷火龙果完成签到,获得积分10
1秒前
qian完成签到,获得积分10
1秒前
2秒前
隐形曼青应助文静的铅笔采纳,获得10
2秒前
Ira1005完成签到,获得积分10
2秒前
18485649437发布了新的文献求助10
3秒前
404完成签到,获得积分10
3秒前
脑洞疼应助ceeray23采纳,获得20
3秒前
pcm发布了新的文献求助10
4秒前
无情修杰完成签到 ,获得积分10
5秒前
元谷雪应助dangniuma采纳,获得10
5秒前
kikkikPCY完成签到,获得积分10
5秒前
我爱科研科研爱我完成签到,获得积分10
6秒前
ant完成签到,获得积分10
6秒前
printzhao发布了新的文献求助10
7秒前
7秒前
拾柒完成签到,获得积分10
7秒前
komisan完成签到 ,获得积分10
7秒前
卫申燕发布了新的文献求助10
8秒前
CAI完成签到,获得积分10
8秒前
8秒前
sevenhill应助Atopos采纳,获得10
8秒前
斯文败类应助热心向日葵采纳,获得10
9秒前
9秒前
momo应助ceeray23采纳,获得20
9秒前
9秒前
9秒前
英俊的铭应助别管我采纳,获得10
10秒前
5High_0完成签到 ,获得积分10
10秒前
psj完成签到,获得积分10
10秒前
三三一完成签到,获得积分10
10秒前
酷波er应助粗暴的达采纳,获得10
10秒前
ccc完成签到 ,获得积分10
10秒前
jx完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573674
求助须知:如何正确求助?哪些是违规求助? 4659920
关于积分的说明 14726714
捐赠科研通 4599776
什么是DOI,文献DOI怎么找? 2524509
邀请新用户注册赠送积分活动 1494848
关于科研通互助平台的介绍 1464955