清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Joint target geometry and polarization properties for polarization image fusion

极化(电化学) 融合 接头(建筑物) 计算机科学 光学 材料科学 计算机视觉 人工智能 物理 结构工程 语言学 工程类 哲学 物理化学 化学
作者
Jin Duan,Ju Liu,Youfei Hao,Guangqiu Chen,Yue Zheng,L.C. Jia
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:178: 108176-108176
标识
DOI:10.1016/j.optlaseng.2024.108176
摘要

Traditional polarization image fusion focuses on mining information from the source image and realizes polarization image fusion by finding the feature balance point between two source images. However, this method is strictly limited to high quality and sufficiently informative source polarization images. In addition, if the fusion rules are formulated in terms of the dimensions of the source image information, it is difficult to achieve accurate and efficient fusion results. Based on this, this paper designs a new polarization image fusion model that joins the target geometry and material polarization characteristics from the starting polarization characteristics of different materials (GM-PFNet). In this implementation, a weak reference polarization image quality assessment method (WR-PIQA) for joint target geometry and material polarization characteristics is designed by exploring the imaging laws of scene target geometry and material polarization characteristics. This method utilizes the polarization parameters of target surface roughness, specular reflection, and diffuse reflection, distinguishing it from traditional feature extraction methods. It employs image quality assessment weighting to explore new information from the source images. Since the model belongs to a data-driven self-evolving training model, it is able to utilize the obtained intermediate fusion results to further co-supervise the fused images during the training process. In this way, our fusion results can benefit both from learning from the original input image and from the intermediate output of the network itself. A comparison with state-of-the-art methods on both self-constructed and publicly available datasets reveals that our GM-PFNet model achieves superior performance in both qualitative and quantitative experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助帮帮我好吗采纳,获得10
50秒前
慕青应助帮帮我好吗采纳,获得10
1分钟前
2分钟前
cc完成签到 ,获得积分10
2分钟前
2分钟前
斯文败类应助帮帮我好吗采纳,获得10
2分钟前
貔貅完成签到,获得积分10
2分钟前
HL完成签到,获得积分10
2分钟前
搜集达人应助帮帮我好吗采纳,获得10
2分钟前
3分钟前
无限的老九完成签到,获得积分10
3分钟前
ranj完成签到,获得积分10
4分钟前
4分钟前
5分钟前
鳗鱼起眸发布了新的文献求助10
5分钟前
6分钟前
chnz3636发布了新的文献求助10
6分钟前
6分钟前
theseus完成签到,获得积分10
7分钟前
7分钟前
共享精神应助帮帮我好吗采纳,获得10
7分钟前
8分钟前
8分钟前
8分钟前
8分钟前
9分钟前
9分钟前
9分钟前
10分钟前
10分钟前
冬去春来完成签到 ,获得积分10
10分钟前
Jasper应助枯藤老柳树采纳,获得30
10分钟前
酷波er应助帮帮我好吗采纳,获得10
10分钟前
11分钟前
11分钟前
科研通AI2S应助白华苍松采纳,获得10
11分钟前
11分钟前
11分钟前
12分钟前
12分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137021
求助须知:如何正确求助?哪些是违规求助? 2787992
关于积分的说明 7784214
捐赠科研通 2444073
什么是DOI,文献DOI怎么找? 1299719
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600997