Reengineering of a flavin‐binding fluorescent protein using ProteinMPNN

荧光 黄素组 氨基酸 黄素单核苷酸 化学 蛋白质工程 蛋白质设计 肽序列 发色团 配体(生物化学) 蛋白质结构 生物化学 计算生物学 立体化学 物理 生物 受体 基因 量子力学 有机化学
作者
Andrey Nikolaev,Alexander Kuzmin,Elena Markeeva,Elizaveta Kuznetsova,Yury L. Ryzhykau,Oleg Semenov,Arina A. Anuchina,Alina Remeeva,Ivan Gushchin
出处
期刊:Protein Science [Wiley]
卷期号:33 (4) 被引量:2
标识
DOI:10.1002/pro.4958
摘要

Abstract Recent advances in machine learning techniques have led to development of a number of protein design and engineering approaches. One of them, ProteinMPNN, predicts an amino acid sequence that would fold and match user‐defined backbone structure. Its performance was previously tested for proteins composed of standard amino acids, as well as for peptide‐ and protein‐binding proteins. In this short report, we test whether ProteinMPNN can be used to reengineer a non‐proteinaceous ligand‐binding protein, flavin‐based fluorescent protein CagFbFP. We fixed the native backbone conformation and the identity of 20 amino acids interacting with the chromophore (flavin mononucleotide, FMN) while letting ProteinMPNN predict the rest of the sequence. The software package suggested replacing 36–48 out of the remaining 86 amino acids so that the resulting sequences are 55%–66% identical to the original one. The three designs that we tested experimentally displayed different expression levels, yet all were able to bind FMN and displayed fluorescence, thermal stability, and other properties similar to those of CagFbFP. Our results demonstrate that ProteinMPNN can be used to generate diverging unnatural variants of fluorescent proteins, and, more generally, to reengineer proteins without losing their ligand‐binding capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalala应助zeke采纳,获得10
1秒前
menghua完成签到,获得积分10
2秒前
3秒前
4秒前
慕青应助兔兔sci采纳,获得10
7秒前
KSDalton应助木杉采纳,获得10
9秒前
KSDalton应助阿旭采纳,获得10
10秒前
彭于晏应助小鱼采纳,获得10
11秒前
船长船长发布了新的文献求助10
11秒前
苹果板栗完成签到,获得积分10
12秒前
cocolu应助皮本皮采纳,获得10
13秒前
上官若男应助皮本皮采纳,获得10
13秒前
13秒前
Jasper应助皮本皮采纳,获得10
13秒前
Owen应助皮本皮采纳,获得10
13秒前
14秒前
传奇3应助qz采纳,获得10
17秒前
18秒前
19秒前
20秒前
泡泡龙完成签到 ,获得积分10
21秒前
船长船长完成签到,获得积分10
21秒前
22秒前
孟祥飞完成签到,获得积分10
23秒前
23秒前
cuc发布了新的文献求助10
23秒前
辛勤的彩虹完成签到,获得积分10
23秒前
吉吉米米发布了新的文献求助10
23秒前
乐乐应助胜胜糖采纳,获得30
24秒前
小鱼发布了新的文献求助10
25秒前
25秒前
124332发布了新的文献求助10
26秒前
SLBY完成签到 ,获得积分10
27秒前
俭朴以南完成签到,获得积分10
28秒前
PAPA发布了新的文献求助10
28秒前
欣喜惜筠完成签到,获得积分10
30秒前
Acc完成签到,获得积分10
31秒前
qz发布了新的文献求助10
31秒前
32秒前
33秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265086
求助须知:如何正确求助?哪些是违规求助? 2905061
关于积分的说明 8332367
捐赠科研通 2575426
什么是DOI,文献DOI怎么找? 1399788
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633376