A hybrid 1D CNN-BiLSTM model for epileptic seizure detection using multichannel EEG feature fusion

发作性 计算机科学 模式识别(心理学) 人工智能 脑电图 卷积神经网络 预处理器 癫痫 特征(语言学) 特征提取 深度学习 水准点(测量) 癫痫发作 神经科学 心理学 语言学 哲学 大地测量学 地理
作者
Swathy Ravi,Ashalatha Radhakrishnan
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:10 (3): 035040-035040 被引量:2
标识
DOI:10.1088/2057-1976/ad3afd
摘要

Abstract Epilepsy, a chronic non-communicable disease is characterized by repeated unprovoked seizures, which are transient episodes of abnormal electrical activity in the brain. While Electroencephalography (EEG) is considered as the gold standard for diagnosis in current clinical practice, manual inspection of EEG is time consuming and biased. This paper presents a novel hybrid 1D CNN-Bi LSTM feature fusion model for automatically detecting seizures. The proposed model leverages spatial features extracted by one dimensional convolutional neural network and temporal features extracted by bi directional long short-term memory network. Ictal and inter ictal data is first acquired from the long multichannel EEG record. The acquired data is segmented and labelled using small fixed windows. Signal features are then extracted from the segments concurrently by the parallel combination of CNN and Bi-LSTM. The spatial and temporal features thus captured are then fused to enhance classification accuracy of model. The approach is validated using benchmark CHB-MIT dataset and 5-fold cross validation which resulted in an average accuracy of 95.90%, with precision 94.78%, F1 score 95.95%. Notably model achieved average sensitivity of 97.18% with false positivity rate at 0.05/hr. The significantly lower false positivity and false negativity rates indicate that the proposed model is a promising tool for detecting seizures in epilepsy patients. The employed parallel path network benefits from memory function of Bi-LSTM and strong feature extraction capabilities of CNN. Moreover, eliminating the need for any domain transformation or additional preprocessing steps, model effectively reduces complexity and enhances efficiency, making it suitable for use by clinicians during the epilepsy diagnostic process.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
颖w发布了新的文献求助10
刚刚
谷策完成签到,获得积分10
1秒前
1秒前
coco完成签到 ,获得积分10
1秒前
请加我XP完成签到,获得积分10
2秒前
狂奔的蜗牛完成签到,获得积分10
2秒前
感动满天完成签到,获得积分10
3秒前
二丙完成签到 ,获得积分10
3秒前
xsy完成签到 ,获得积分10
3秒前
Q丶完成签到,获得积分10
4秒前
bible完成签到,获得积分10
4秒前
4秒前
呆萌鱼完成签到,获得积分10
4秒前
安然僧应助HC采纳,获得10
5秒前
Xixia完成签到,获得积分10
5秒前
yyan完成签到,获得积分10
6秒前
alei1203完成签到,获得积分10
6秒前
ElbingX发布了新的文献求助20
7秒前
7秒前
玖月完成签到 ,获得积分10
8秒前
Eric完成签到,获得积分10
8秒前
abab小王完成签到,获得积分10
8秒前
科研通AI2S应助YXH采纳,获得10
8秒前
9秒前
南风应助过儿采纳,获得10
10秒前
Fashioner8351发布了新的文献求助10
10秒前
所所应助zw采纳,获得10
11秒前
11秒前
11秒前
yeyu123发布了新的文献求助10
11秒前
yyan发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
吴世勋完成签到,获得积分10
13秒前
13秒前
13秒前
情怀应助小危酱采纳,获得10
15秒前
懒羊羊完成签到 ,获得积分10
15秒前
Master-wang完成签到,获得积分10
15秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413781
求助须知:如何正确求助?哪些是违规求助? 3015961
关于积分的说明 8873277
捐赠科研通 2703689
什么是DOI,文献DOI怎么找? 1482412
科研通“疑难数据库(出版商)”最低求助积分说明 685278
邀请新用户注册赠送积分活动 680017