清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Collaborative graph contrastive learning for recommendation

计算机科学 图形 自然语言处理 理论计算机科学
作者
Tao Wei,Changchun Yang,Yanqi Zheng,Jingxue Zhang
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-14 被引量:1
标识
DOI:10.3233/jifs-236497
摘要

Recently, Graph Neural Networks (GNNs) using aggregating neighborhood collaborative information have shown effectiveness in recommendation. However, GNNs-based models suffer from over-smoothing and data sparsity problems. Due to its self-supervised nature, contrastive learning has gained considerable attention in the field of recommendation, aiming at alleviating highly sparse data. Graph contrastive learning models are widely used to learn the consistency of representations by constructing different graph augmentation views. Most current graph augmentation with random perturbation destroy the original graph structure information, which mislead embeddings learning. In this paper, an effective graph contrastive learning paradigm CollaGCL is proposed, which constructs graph augmentation by using singular value decomposition to preserve crucial structure information. CollaGCL enables perturbed views to effectively capture global collaborative information, mitigating the negative impact of graph structural perturbations. To optimize the contrastive learning task, the extracted meta-knowledge was propagate throughout the original graph to learn reliable embedding representations. The self-information learning between views enhances the semantic information of nodes, thus alleviating the problem of over-smoothing. Experimental results on three real-world datasets demonstrate the significant improvement of CollaGCL over state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大喜喜发布了新的文献求助200
6秒前
AA完成签到 ,获得积分10
12秒前
雪山飞龙发布了新的文献求助10
14秒前
26秒前
ceeray23发布了新的文献求助20
31秒前
发呆员发布了新的文献求助10
41秒前
旅行者完成签到,获得积分10
52秒前
TXZ06发布了新的文献求助10
1分钟前
科研通AI6应助发呆员采纳,获得10
1分钟前
lululemontree应助大刘采纳,获得30
1分钟前
1分钟前
大喜喜发布了新的文献求助10
1分钟前
LinglongCai完成签到 ,获得积分10
1分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
雪山飞龙发布了新的文献求助10
2分钟前
2分钟前
激动的似狮完成签到,获得积分10
2分钟前
雪山飞龙发布了新的文献求助10
2分钟前
雪山飞龙完成签到,获得积分10
2分钟前
barry发布了新的文献求助10
2分钟前
ceeray23发布了新的文献求助20
2分钟前
tt完成签到,获得积分10
2分钟前
发呆员发布了新的文献求助10
3分钟前
科研通AI2S应助发呆员采纳,获得10
3分钟前
3分钟前
白日睡觉发布了新的文献求助10
3分钟前
3分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
3分钟前
雪山飞龙发布了新的文献求助10
3分钟前
英俊的铭应助白日睡觉采纳,获得10
3分钟前
lovelife完成签到,获得积分10
3分钟前
大喜喜发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
王聪冲冲冲完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
6分钟前
Tales完成签到 ,获得积分10
7分钟前
7分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584778
求助须知:如何正确求助?哪些是违规求助? 4668667
关于积分的说明 14771555
捐赠科研通 4613925
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499084
关于科研通互助平台的介绍 1467531