Collaborative graph contrastive learning for recommendation

计算机科学 图形 自然语言处理 理论计算机科学
作者
Tao Wei,Changchun Yang,Yanqi Zheng,Jingxue Zhang
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:: 1-14 被引量:1
标识
DOI:10.3233/jifs-236497
摘要

Recently, Graph Neural Networks (GNNs) using aggregating neighborhood collaborative information have shown effectiveness in recommendation. However, GNNs-based models suffer from over-smoothing and data sparsity problems. Due to its self-supervised nature, contrastive learning has gained considerable attention in the field of recommendation, aiming at alleviating highly sparse data. Graph contrastive learning models are widely used to learn the consistency of representations by constructing different graph augmentation views. Most current graph augmentation with random perturbation destroy the original graph structure information, which mislead embeddings learning. In this paper, an effective graph contrastive learning paradigm CollaGCL is proposed, which constructs graph augmentation by using singular value decomposition to preserve crucial structure information. CollaGCL enables perturbed views to effectively capture global collaborative information, mitigating the negative impact of graph structural perturbations. To optimize the contrastive learning task, the extracted meta-knowledge was propagate throughout the original graph to learn reliable embedding representations. The self-information learning between views enhances the semantic information of nodes, thus alleviating the problem of over-smoothing. Experimental results on three real-world datasets demonstrate the significant improvement of CollaGCL over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
niuniu发布了新的文献求助10
1秒前
yejiafeng完成签到,获得积分10
2秒前
2秒前
MMMMathilda23发布了新的文献求助10
2秒前
今后应助钟鸿盛Domi采纳,获得10
3秒前
Wangdx发布了新的文献求助10
4秒前
令狐天与完成签到,获得积分10
5秒前
电池博士完成签到,获得积分10
5秒前
sss312发布了新的文献求助10
5秒前
影儿完成签到,获得积分20
9秒前
MMMMathilda23完成签到,获得积分10
11秒前
11秒前
无花果应助王宇杰采纳,获得10
14秒前
14秒前
Lucas应助csj采纳,获得10
15秒前
科研通AI5应助活泼万言采纳,获得10
18秒前
wanwan应助灰底爆米花采纳,获得10
19秒前
yufeng完成签到 ,获得积分10
20秒前
太阳花发布了新的文献求助10
20秒前
wq完成签到,获得积分10
20秒前
科研通AI5应助聪明的元彤采纳,获得10
21秒前
大模型应助MMMMathilda23采纳,获得10
21秒前
22秒前
aike完成签到,获得积分10
23秒前
DavidXie应助摔跤的猫采纳,获得10
24秒前
淡淡乐巧完成签到 ,获得积分10
25秒前
闲着也是闲着完成签到,获得积分10
27秒前
Rondab应助Gtingting采纳,获得10
27秒前
Ren应助健康的雨安采纳,获得10
28秒前
LFFF999发布了新的文献求助10
28秒前
29秒前
科目三应助more采纳,获得10
29秒前
30秒前
杜兰特发布了新的文献求助10
32秒前
Gengsai发布了新的文献求助10
33秒前
33秒前
37秒前
37秒前
39秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993068
求助须知:如何正确求助?哪些是违规求助? 3533981
关于积分的说明 11264261
捐赠科研通 3273665
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809644