亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Tensor quantile regression with low-rank tensor train estimation

张量(固有定义) 数学 估计员 分位数回归 维数之咒 分位数 可解释性 数学优化 计算机科学 模式识别(心理学) 人工智能 应用数学 统计 纯数学
作者
Zihuan Liu,Cheuk Yin Lee,Heping Zhang
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:18 (2) 被引量:1
标识
DOI:10.1214/23-aoas1835
摘要

Neuroimaging studies often involve predicting a scalar outcome from an array of images collectively called tensor. The use of magnetic resonance imaging (MRI) provides a unique opportunity to investigate the structures of the brain. To learn the association between MRI images and human intelligence, we formulate a scalar-on-image quantile regression framework. However, the high dimensionality of the tensor makes estimating the coefficients for all elements computationally challenging. To address this, we propose a low-rank coefficient array estimation algorithm based on tensor train (TT) decomposition which we demonstrate can effectively reduce the dimensionality of the coefficient tensor to a feasible level while ensuring adequacy to the data. Our method is more stable and efficient compared to the commonly used, Canonic Polyadic rank approximation-based method. We also propose a generalized Lasso penalty on the coefficient tensor to take advantage of the spatial structure of the tensor, further reduce the dimensionality of the coefficient tensor, and improve the interpretability of the model. The consistency and asymptotic normality of the TT estimator are established under some mild conditions on the covariates and random errors in quantile regression models. The rate of convergence is obtained with regularization under the total variation penalty. Extensive numerical studies, including both synthetic and real MRI imaging data, are conducted to examine the empirical performance of the proposed method and its competitors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
4秒前
gxx发布了新的文献求助10
6秒前
惠须一饮三杯杯完成签到,获得积分10
8秒前
冷静的振家完成签到,获得积分10
8秒前
10秒前
11秒前
16秒前
17秒前
wsj发布了新的文献求助10
20秒前
Ava应助骨科小李采纳,获得10
21秒前
22秒前
浪里白条发布了新的文献求助10
23秒前
别看了发布了新的文献求助10
26秒前
斯文败类应助wsj采纳,获得10
28秒前
小蘑菇应助gxx采纳,获得10
34秒前
哲别发布了新的文献求助10
44秒前
Hello应助浪里白条采纳,获得10
48秒前
freshfire完成签到,获得积分20
48秒前
HtheJ完成签到,获得积分10
48秒前
dimples完成签到 ,获得积分10
59秒前
英俊的铭应助Re采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
小蘑菇应助小废物采纳,获得20
1分钟前
骨科小李发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Re发布了新的文献求助10
1分钟前
杨江华完成签到,获得积分10
1分钟前
科研大王完成签到,获得积分10
2分钟前
明亮的老四完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
小废物发布了新的文献求助20
2分钟前
nazhang发布了新的文献求助10
2分钟前
浪里白条发布了新的文献求助10
2分钟前
香蕉觅云应助nazhang采纳,获得10
2分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644576
求助须知:如何正确求助?哪些是违规求助? 4764521
关于积分的说明 15025286
捐赠科研通 4802940
什么是DOI,文献DOI怎么找? 2567735
邀请新用户注册赠送积分活动 1525391
关于科研通互助平台的介绍 1484876