作者
Patrícia M Oba,Vanessa M De La Guardia Hidrogo,Janelle Kelly,Jennifer Saunders-Blades,Andrew J. Steelman,Kelly S. Swanson
摘要
Abstract Bioactive peptides (BP) are recognized for their ability to function as antioxidants and maintain lipid stability. They may have positive health effects, including antihypertensive, anti-inflammatory, antimicrobial, osteoprotective, gut health, and immunomodulatory properties, but are poorly tested in cats. Our primary objective was to determine the apparent total tract digestibility (ATTD) of BP-containing kibble diets and assess how the fecal characteristics, metabolites, and microbiota were affected in adult cats. Our secondary objective was to test whether BP could impact blood oxidative stress markers and cytokine concentrations following transport stress. Twelve adult cats (4.83 ± 0.37 yr; 4.76 ± 0.14 kg) were used in a replicated 4 × 4 Latin square design to test four extruded kibble diets: Control (no BP), Chicken (4% chicken BP), Marine1 (2% marine BP), and Marine2 (4% marine BP). Each experimental period lasted 28 d, with a 20-d adaptation phase, 5 d for fecal collection, 2 d for blood collection, and 1 d for transport stress testing (driven in vehicle in individual carriers for 45 min). Salivary cortisol and blood oxidative stress markers and cytokines were measured after transport. Fecal microbiota data were evaluated using 16S rRNA gene amplicon sequencing and QIIME2. All other data were analyzed using the Mixed Models procedure of SAS, with P < 0.05 being considered significant and P < 0.10 considered trends. No differences were observed in animal health outcomes, with all cats remaining healthy and serum metabolites remaining within reference ranges. Cats fed the Marine2 diet had higher (P < 0.05) ATTD of dry matter (84.5% vs. 80.9%) and organic matter (88.3% vs. 85.8%) than those fed the control diet. The ATTD of protein and energy tended to be higher (P < 0.10) for cats fed the Marine2 diet. Fecal characteristics, metabolites, and bacterial alpha and beta diversity measures were not affected by treatment. However, the relative abundances of six bacterial genera were different (P < 0.05) and two bacterial genera tended to be different (P < 0.10) across treatments. Treatment did not alter salivary cortisol, blood oxidative stress markers, or blood cytokines after transport stress. Our data suggest that BP inclusion may increase nutrient digestibility and modify fecal microbiota and immune measures. More testing is required, however, to determine whether BP may provide additional benefits to cats.