Task Offloading and Energy Optimization in Hybrid UAV-Assisted Mobile Edge Computing Systems

移动边缘计算 计算机科学 任务(项目管理) GSM演进的增强数据速率 嵌入式系统 工程类 系统工程 电信
作者
Ang Gao,Shuai Zhang,Qian Zhang,Yansu Hu,Shuhua Liu,Wei Liang,Soon Xin Ng
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (8): 12052-12066 被引量:5
标识
DOI:10.1109/tvt.2024.3380003
摘要

The paper considers a more challenging task offloading scenario in hybrid UAV-assisted mobile edge computing (MEC) systems, where multiple dual-function UAVs tour in the sky to serve ground users (GUs) by acting as edge servers or aerial relays. Since each task can be executed on GUs, UAVs and the base station (BS) in parallel, the service assignment, task splitting, trajectory of UAVs, as well as resource and transmission power of both UAVs and GUs should be jointly optimized to minimize the system energy consumption with the subjection of the maximum tolerable latency and computing limitations. To tackle such mixed integer non-linear programming (MINLP) problem, a deep reinforcement learning (DRL) combined successive convex approximation (SCA) algorithm is proposed in the paper to seek a close optimal solution with low-complexity. In specific, the binary service assignment and continuous task splitting are obtained by DRL, while the trajectory planning and resource scheduling are jointly optimized by SCA in sequence to speed up the convergence. Numerical results demonstrate that the proposed DRL-SCA algorithm equipped with dual-function UAV scheme is more effective in making full use of the on-board resource of UAVs and reducing the overall system energy consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr完成签到,获得积分10
刚刚
如梦如画发布了新的文献求助10
1秒前
葉芊羽发布了新的文献求助10
2秒前
wyy发布了新的文献求助10
2秒前
和谐蛋蛋发布了新的文献求助20
3秒前
可乐完成签到,获得积分10
3秒前
赵亮亮发布了新的文献求助10
5秒前
0384p完成签到,获得积分10
5秒前
5秒前
17发布了新的文献求助10
6秒前
今天只做一件事应助陈烨采纳,获得10
6秒前
科研通AI5应助打工dog采纳,获得10
6秒前
8秒前
8秒前
8秒前
9秒前
想水SCI发布了新的文献求助10
9秒前
NOIR4LU完成签到,获得积分10
11秒前
jackyyy发布了新的文献求助10
11秒前
11秒前
柒寒完成签到,获得积分10
12秒前
脑壳疼发布了新的文献求助10
13秒前
ddkkkkkk发布了新的文献求助10
13秒前
打打应助Dr采纳,获得10
13秒前
路灯下的小伙完成签到,获得积分10
13秒前
鹏程发布了新的文献求助10
13秒前
是安山完成签到,获得积分10
14秒前
陈住气发布了新的文献求助10
14秒前
小米超辣发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
moon完成签到,获得积分20
16秒前
17秒前
小欧完成签到,获得积分10
17秒前
17秒前
葉芊羽完成签到,获得积分10
17秒前
tomorrow完成签到,获得积分20
17秒前
科目三应助如梦如画采纳,获得10
17秒前
Jasper应助闪闪采纳,获得30
18秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483245
求助须知:如何正确求助?哪些是违规求助? 3072633
关于积分的说明 9127379
捐赠科研通 2764270
什么是DOI,文献DOI怎么找? 1517034
邀请新用户注册赠送积分活动 701873
科研通“疑难数据库(出版商)”最低求助积分说明 700770