已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Where Deepfakes Gaze at? Spatial-Temporal Gaze Inconsistency Analysis for Video Face Forgery Detection

凝视 计算机科学 计算机视觉 人工智能 面子(社会学概念) 社会科学 社会学
作者
Chunlei Peng,Zimin Miao,Decheng Liu,Nannan Wang,Ruimin Hu,Xinbo Gao
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 4507-4517 被引量:5
标识
DOI:10.1109/tifs.2024.3381823
摘要

With the continuous development of generative models on face generation, how to distinguish the real and fake face has become an important problem for security. Because of the continuous improvement on the detection accuracy by facial physiological signals, video face forgery detection based on facial physiological signal analysis has received more and more attention, which has become an important research branch in the field of face forgery detection. Currently, most of the research on forgery detection based on physiological signal analysis use biometric features such as blinking patterns, head swings, heart rate signals, and lip movements. However, there hasn't been much exploration on the usage of gaze features in face forgery detection. Through the analysis of gaze directions in face videos, we have observed differences in the distribution of gaze direction pattern between the real and forged videos. Specifically, real videos tend to have more concentrated gaze distribution within a short period of time, while forged videos have more dispersed gaze distributions. In this paper, we present a novel Deepfake gaze analysis method named DFGaze, to explore spatial-temporal gaze inconsistency for video face forgery detection. Our method uses the gaze analysis model (GAM) to analyze the gaze features of face video frames, and then applies a spatial-temporal feature aggregator to realize authenticity classification based on gaze features. In order to better mine the authenticity clues in the videos, we further use the texture analysis model (TAM) and attribute analysis model (AAM) to improve the representation ability of spatial-temporal feature differences between real and forged faces. Extensive experiments show that our method can achieve state-of-the-art performance with the help of gaze analysis. The source code is available at https://github.com/ziminMIAO/DFGaze.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang完成签到 ,获得积分10
刚刚
语言的浅浅完成签到,获得积分10
1秒前
2秒前
2秒前
故意的谷波完成签到 ,获得积分20
3秒前
changeL发布了新的文献求助10
4秒前
燕海雪完成签到,获得积分10
4秒前
懒大王完成签到 ,获得积分10
5秒前
彭于晏应助jiang_tian采纳,获得10
5秒前
7秒前
科研通AI5应助嗷嗷采纳,获得10
7秒前
敏感的百招完成签到,获得积分10
8秒前
奔跑的神灯完成签到 ,获得积分10
8秒前
9秒前
苏格拉没有底完成签到 ,获得积分10
10秒前
11秒前
执念完成签到 ,获得积分10
11秒前
槿浅完成签到 ,获得积分10
12秒前
龙骑士25完成签到 ,获得积分10
13秒前
稳重岩完成签到 ,获得积分10
14秒前
黄毛虎完成签到 ,获得积分10
15秒前
蟹治猿完成签到 ,获得积分10
15秒前
15秒前
15秒前
安然完成签到 ,获得积分10
16秒前
超人不会飞完成签到,获得积分10
16秒前
LZL完成签到 ,获得积分10
17秒前
苏su完成签到 ,获得积分10
17秒前
千倾完成签到 ,获得积分10
18秒前
小谢同学完成签到 ,获得积分10
19秒前
20秒前
axe完成签到,获得积分10
21秒前
白白完成签到 ,获得积分10
21秒前
Telek发布了新的文献求助10
21秒前
山谷与花完成签到,获得积分20
21秒前
xeonnn发布了新的文献求助10
22秒前
22秒前
落叶完成签到 ,获得积分10
24秒前
负责的团子完成签到,获得积分20
25秒前
敞敞亮亮完成签到 ,获得积分10
25秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491218
求助须知:如何正确求助?哪些是违规求助? 3077854
关于积分的说明 9150810
捐赠科研通 2770325
什么是DOI,文献DOI怎么找? 1520280
邀请新用户注册赠送积分活动 704552
科研通“疑难数据库(出版商)”最低求助积分说明 702253