Where Deepfakes Gaze at? Spatial-Temporal Gaze Inconsistency Analysis for Video Face Forgery Detection

凝视 计算机科学 计算机视觉 人工智能 面子(社会学概念) 社会科学 社会学
作者
Chunlei Peng,Zimin Miao,Decheng Liu,Nannan Wang,Ruimin Hu,Xinbo Gao
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 4507-4517 被引量:5
标识
DOI:10.1109/tifs.2024.3381823
摘要

With the continuous development of generative models on face generation, how to distinguish the real and fake face has become an important problem for security. Because of the continuous improvement on the detection accuracy by facial physiological signals, video face forgery detection based on facial physiological signal analysis has received more and more attention, which has become an important research branch in the field of face forgery detection. Currently, most of the research on forgery detection based on physiological signal analysis use biometric features such as blinking patterns, head swings, heart rate signals, and lip movements. However, there hasn't been much exploration on the usage of gaze features in face forgery detection. Through the analysis of gaze directions in face videos, we have observed differences in the distribution of gaze direction pattern between the real and forged videos. Specifically, real videos tend to have more concentrated gaze distribution within a short period of time, while forged videos have more dispersed gaze distributions. In this paper, we present a novel Deepfake gaze analysis method named DFGaze, to explore spatial-temporal gaze inconsistency for video face forgery detection. Our method uses the gaze analysis model (GAM) to analyze the gaze features of face video frames, and then applies a spatial-temporal feature aggregator to realize authenticity classification based on gaze features. In order to better mine the authenticity clues in the videos, we further use the texture analysis model (TAM) and attribute analysis model (AAM) to improve the representation ability of spatial-temporal feature differences between real and forged faces. Extensive experiments show that our method can achieve state-of-the-art performance with the help of gaze analysis. The source code is available at https://github.com/ziminMIAO/DFGaze.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助wish采纳,获得10
2秒前
Afaq发布了新的文献求助10
2秒前
果粒多发布了新的文献求助10
3秒前
3秒前
无辜如容完成签到,获得积分10
4秒前
4秒前
7秒前
8秒前
ASA发布了新的文献求助30
8秒前
9秒前
情怀应助tingting9采纳,获得10
10秒前
FXQ123_范发布了新的文献求助10
10秒前
sun完成签到,获得积分20
10秒前
12秒前
彭于晏应助wldsd采纳,获得30
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
13秒前
高一淼发布了新的文献求助10
14秒前
明道若昧完成签到,获得积分10
14秒前
上官若男应助mk采纳,获得10
15秒前
wish完成签到,获得积分10
17秒前
wish发布了新的文献求助10
19秒前
稍等一下完成签到 ,获得积分10
20秒前
momo发布了新的文献求助10
20秒前
22秒前
22秒前
liang白开完成签到,获得积分10
24秒前
mk发布了新的文献求助10
26秒前
丘比特应助嗯嗯采纳,获得10
26秒前
乐乐应助abin采纳,获得10
28秒前
史念薇发布了新的文献求助10
28秒前
28秒前
Hello应助Afaq采纳,获得10
31秒前
Tourist完成签到 ,获得积分10
33秒前
王路飞发布了新的文献求助10
33秒前
36秒前
37秒前
38秒前
西南楚留香完成签到,获得积分10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136