已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Intelligent identification and classification of Small UAV Remote Control Signals Based on Improved Yolov5-7.0

计算机科学 鉴定(生物学) 人工智能 控制(管理) 模式识别(心理学) 遥感 机器学习 植物 生物 地质学
作者
MinJing Li,Donglai Hao,J Wang,Shuozhe Wang,Zijian Zhong,Zhiwen Zhao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 41688-41703
标识
DOI:10.1109/access.2024.3376738
摘要

At present, an increasing number of small UAVs(Unmanned Aerial Vehicles) are commercialized and common, and the application of small UAVs has very good development prospects, such as UAV distribution services, UAV aerial photography services, and UAV formation performance.However, the misuse of small drones poses a significant threat.Lawbreakers use small drones equipped with various sensors to spy on personal privacy, steal corporate secrets, and threaten national conferences, which have had many adverse effects on society.In future wars, these small drones will perhaps be used on the battlefield along with high-end weapons.Therefore, it is necessary to find a solution for effectively identifying the basic information of UAV.For the existence of UAV and various small UAV types, this paper proposes a combination of RF sensing and target detection techniques with target detection algorithms to learn RF signal frequency frequency hopping features to detect UAV presence and identify the detected UAV.First, the RF signal of the UAV was obtained in real time by a software radio, and the time-frequency analysis of the short-time Fourier transform and wavelet transform is performed to generate frequency domain images with retained frequency hopping features.Then, the improved Yolov5-7.0target detection model was employed for training, and finally, the trained model was used for identification and classification.The results showed that the method can effectively assist the detection and classification of UAVs that were obtained by identifying and classifying 5400 unlabeled images.The F1 score was 0.93, and the three assessment measures of P(Precision), R(Recall), and mAP(mean Average Precision) were 1.00, 1.00, and 0.967, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助眯眯眼的沛柔采纳,获得10
刚刚
小高发布了新的文献求助10
1秒前
郎晟发布了新的文献求助10
1秒前
嘿嘿发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
5秒前
zkwgly发布了新的文献求助10
6秒前
闪闪问安发布了新的文献求助10
7秒前
10秒前
回来完成签到,获得积分10
10秒前
迷惘墨香发布了新的文献求助10
11秒前
11秒前
11秒前
乐乐应助zkwgly采纳,获得10
13秒前
吉吉无名发布了新的文献求助10
13秒前
周韶华发布了新的文献求助10
14秒前
15秒前
dream177777发布了新的文献求助10
15秒前
ma完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
潇洒的千山完成签到,获得积分10
18秒前
wanci应助爱科研采纳,获得10
18秒前
M777发布了新的文献求助10
18秒前
wxy完成签到 ,获得积分20
19秒前
Gtty发布了新的文献求助10
19秒前
yuaner发布了新的文献求助10
20秒前
某丞完成签到,获得积分10
21秒前
potato_bel发布了新的文献求助10
23秒前
梁朝伟应助拼搏小丸子采纳,获得10
23秒前
吉吉无名完成签到,获得积分10
24秒前
24秒前
25秒前
sci女工应助小xx采纳,获得10
26秒前
28秒前
Ying发布了新的文献求助10
29秒前
Lucas应助热塑性哈士奇采纳,获得10
30秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171307
求助须知:如何正确求助?哪些是违规求助? 2822210
关于积分的说明 7938464
捐赠科研通 2482717
什么是DOI,文献DOI怎么找? 1322709
科研通“疑难数据库(出版商)”最低求助积分说明 633722
版权声明 602627