Low-Light Salient Object Detection by Learning to Highlight the Foreground Objects

计算机科学 计算机视觉 人工智能 目标检测 对象(语法) 突出 模式识别(心理学)
作者
Xiao Lu,Yulin Yuan,Xing Liu,Lucai Wang,Xuanyu Zhou,Yimin Yang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 7712-7724 被引量:8
标识
DOI:10.1109/tcsvt.2024.3377108
摘要

Previous methods in salient object detection (SOD) mainly focused on favorable illumination circumstances while neglecting the performance in low-light condition, which significantly impedes the development of related down-stream tasks. In this work, considering that it is impractical to annotate the large-scale labels for this task, we present a framework (HDNet) to detect the salient objects in low-light images with the synthetic images. Our HDNet consists of a foreground highlight sub-network (HNet) and an appearance-aware detection sub-network (DNet), both of which can be learned jointly in an end-to-end manner. Specifically, to highlight the foreground objects, we design the HNet to estimate the parameters to adjust the dynamic range for each pixel adaptively, which can be trained via the weak supervision signals of the salient object labels. In addition, we design a simple detection network (DNet) with a contextual feature fusion module and a multi-scale feature refine module for detailed feature fusion and refinement. Furthermore, we contribute the first annotated dataset for salient object detection in low-light images (SOD-LL), including 6,000 labeled synthetic images (SOD-LLS) and 2,000 labeled real images (SOD-LLR). Experimental results on SOD-LL and other low-light videos in the wild demonstrate the effectiveness and generalization ability of our method. Our dataset and code are available at https://github.com/Ylinyuan/HDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不要辣椒发布了新的文献求助10
1秒前
coke发布了新的文献求助10
1秒前
1秒前
张菁发布了新的文献求助10
2秒前
幸福广山完成签到,获得积分10
2秒前
小郭完成签到,获得积分20
3秒前
烟花应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
木又发布了新的文献求助10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
Aimedar应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
汉堡包应助科研通管家采纳,获得100
4秒前
4秒前
4秒前
5秒前
Z1完成签到,获得积分10
7秒前
7秒前
轩辕寄风应助水论文行者采纳,获得10
7秒前
科研通AI5应助yif采纳,获得30
7秒前
7秒前
辛勤香芦完成签到,获得积分20
7秒前
8秒前
小何发布了新的文献求助10
9秒前
9秒前
10秒前
张菁完成签到,获得积分10
10秒前
Akim应助朴素念波采纳,获得10
10秒前
12秒前
cdercder发布了新的文献求助10
12秒前
12秒前
Jay完成签到,获得积分10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980258
求助须知:如何正确求助?哪些是违规求助? 3524227
关于积分的说明 11220452
捐赠科研通 3261658
什么是DOI,文献DOI怎么找? 1800882
邀请新用户注册赠送积分活动 879359
科研通“疑难数据库(出版商)”最低求助积分说明 807234