Low-Light Salient Object Detection by Learning to Highlight the Foreground Objects

计算机科学 计算机视觉 人工智能 目标检测 对象(语法) 突出 模式识别(心理学)
作者
Xiao Lu,Yulin Yuan,Xing Liu,Lucai Wang,Xuanyu Zhou,Yimin Yang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 7712-7724 被引量:16
标识
DOI:10.1109/tcsvt.2024.3377108
摘要

Previous methods in salient object detection (SOD) mainly focused on favorable illumination circumstances while neglecting the performance in low-light condition, which significantly impedes the development of related down-stream tasks. In this work, considering that it is impractical to annotate the large-scale labels for this task, we present a framework (HDNet) to detect the salient objects in low-light images with the synthetic images. Our HDNet consists of a foreground highlight sub-network (HNet) and an appearance-aware detection sub-network (DNet), both of which can be learned jointly in an end-to-end manner. Specifically, to highlight the foreground objects, we design the HNet to estimate the parameters to adjust the dynamic range for each pixel adaptively, which can be trained via the weak supervision signals of the salient object labels. In addition, we design a simple detection network (DNet) with a contextual feature fusion module and a multi-scale feature refine module for detailed feature fusion and refinement. Furthermore, we contribute the first annotated dataset for salient object detection in low-light images (SOD-LL), including 6,000 labeled synthetic images (SOD-LLS) and 2,000 labeled real images (SOD-LLR). Experimental results on SOD-LL and other low-light videos in the wild demonstrate the effectiveness and generalization ability of our method. Our dataset and code are available at https://github.com/Ylinyuan/HDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
DYB完成签到,获得积分10
1秒前
1秒前
小陈发布了新的文献求助10
1秒前
可爱的函函应助鱼浅浅采纳,获得10
1秒前
1秒前
小元发布了新的文献求助10
1秒前
2秒前
番茄鱼发布了新的文献求助10
3秒前
3秒前
杨凤霞完成签到,获得积分10
3秒前
oohey发布了新的文献求助10
4秒前
大星星发布了新的文献求助10
5秒前
5秒前
wuxifan发布了新的文献求助10
5秒前
未live完成签到,获得积分10
5秒前
Francis发布了新的文献求助30
6秒前
6秒前
lky完成签到,获得积分10
6秒前
6秒前
FashionBoy应助皮皮蛙采纳,获得10
6秒前
WuZY完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
cnlme发布了新的文献求助10
7秒前
山屿完成签到,获得积分10
7秒前
7秒前
8秒前
暴龙战士完成签到,获得积分20
8秒前
野草发布了新的文献求助10
8秒前
wu完成签到,获得积分10
8秒前
深情安青应助huang采纳,获得10
9秒前
一目完成签到,获得积分10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
9秒前
文静绮梅完成签到 ,获得积分10
9秒前
Toutou完成签到,获得积分10
9秒前
trumning应助科研通管家采纳,获得10
9秒前
loong应助科研通管家采纳,获得10
9秒前
萌萌发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894