Low-Light Salient Object Detection by Learning to Highlight the Foreground Objects

计算机科学 计算机视觉 人工智能 目标检测 对象(语法) 突出 模式识别(心理学)
作者
Xiao Lu,Yulin Yuan,Xing Liu,Lucai Wang,Xuanyu Zhou,Yimin Yang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 7712-7724 被引量:16
标识
DOI:10.1109/tcsvt.2024.3377108
摘要

Previous methods in salient object detection (SOD) mainly focused on favorable illumination circumstances while neglecting the performance in low-light condition, which significantly impedes the development of related down-stream tasks. In this work, considering that it is impractical to annotate the large-scale labels for this task, we present a framework (HDNet) to detect the salient objects in low-light images with the synthetic images. Our HDNet consists of a foreground highlight sub-network (HNet) and an appearance-aware detection sub-network (DNet), both of which can be learned jointly in an end-to-end manner. Specifically, to highlight the foreground objects, we design the HNet to estimate the parameters to adjust the dynamic range for each pixel adaptively, which can be trained via the weak supervision signals of the salient object labels. In addition, we design a simple detection network (DNet) with a contextual feature fusion module and a multi-scale feature refine module for detailed feature fusion and refinement. Furthermore, we contribute the first annotated dataset for salient object detection in low-light images (SOD-LL), including 6,000 labeled synthetic images (SOD-LLS) and 2,000 labeled real images (SOD-LLR). Experimental results on SOD-LL and other low-light videos in the wild demonstrate the effectiveness and generalization ability of our method. Our dataset and code are available at https://github.com/Ylinyuan/HDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助科研通管家采纳,获得10
刚刚
浮游应助Aurora采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得30
刚刚
xiaohe应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
Twonej应助科研通管家采纳,获得30
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
1秒前
wxyshare应助科研通管家采纳,获得10
1秒前
xiaohe应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
烟花应助科研通管家采纳,获得10
1秒前
zzzxhhr发布了新的文献求助10
3秒前
那年那兔那些事完成签到 ,获得积分10
3秒前
Hello应助泷生采纳,获得10
3秒前
ZYC关闭了ZYC文献求助
4秒前
4秒前
chen完成签到 ,获得积分10
5秒前
Akim应助时尚的靖采纳,获得10
6秒前
6秒前
李嘉衡完成签到 ,获得积分10
6秒前
哈哈镜阿姐应助led灯泡采纳,获得10
6秒前
游佩君完成签到,获得积分10
6秒前
7秒前
胡罗卜完成签到,获得积分10
7秒前
xixi完成签到,获得积分20
7秒前
lyx完成签到,获得积分10
7秒前
Kate完成签到,获得积分10
7秒前
8秒前
jason完成签到,获得积分0
8秒前
9秒前
jyylrl发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642218
求助须知:如何正确求助?哪些是违规求助? 4758455
关于积分的说明 15016860
捐赠科研通 4800783
什么是DOI,文献DOI怎么找? 2566211
邀请新用户注册赠送积分活动 1524307
关于科研通互助平台的介绍 1483909