A Novel Guided Deep Reinforcement Learning Tracking Control Strategy for Multirotors

强化学习 计算机科学 钢筋 人工智能 跟踪(教育) 控制(管理) 控制工程 工程类 控制理论(社会学) 心理学 结构工程 教育学
作者
Hean Hua,Yaonan Wang,Hang Zhong,Hui Zhang,Yongchun Fang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/tase.2024.3374752
摘要

This paper presents an intelligent control scheme for multirotors, where accurate trajectory tracking, strong robustness and reliable generalization are guaranteed by the dual-feedback sliding-mode (DFSM) guided deep reinforcement learning (RL). Different from current solutions, the proposed method explores optimal learning strategy on the sliding surface according to the DFSM demonstrations, where the elegantly designed parallel evaluation takes full advantage of model knowledge and learning exploration. Specifically, the intelligent tracking control is achieved in a two-step design. First, the DFSM algorithm is designed for multirotors, where the linear and nonlinear feedback terms work cooperatively. Second, the DFSM-guided deep RL is put forward to achieve intelligent switching on the sliding surface, where position and velocity errors are both considered to generate accurate switching decisions. In the framework, explorations and the DFSM demonstrations are evaluated in parallel, where only the explorations that are better than the DFSM baseline, are kept for policy improvement. In this way, the DFSM algorithm keeps pushing the RL policy to explore better strategy, where the unavoidable bad experiences arisen from exploration are identified accurately. Practical comparative experimental results are included to verify the effectiveness of the proposed strategy. Note to Practitioners —This paper is motivated by the practical problem of controlling multirotor system in uncertain environments. Up until now, most existing approaches are proposed without taking full advantage of model knowledge and deep learning techniques simultaneously, which lacks of reliability in practical application. To deal with the problem, a new dual-feedback sliding-mode (DFSM) guided deep reinforcement learning (RL) strategy is proposed, where the dual feedback and guided RL are designed to achieve satisfactory tracking control and simultaneously handle uncertainties. Specifically, by introducing double-check framework, the RL strategy explores optimal switching policy on the sliding surface according to the DFSM demonstrations, guaranteeing strong robustness and reliable generalization of the obtained RL policy in uncertain environments. The key feature of the framework is that the DFSM-driven training guarantees practice-oriented tracking control in a DFSM-RL cooperative manner. Comparative experiments are implemented to verify the tracking performance of the proposed intelligent control strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
AgnesT应助callmefather采纳,获得10
刚刚
1秒前
kiterunner完成签到,获得积分10
1秒前
柯基小胖发布了新的文献求助10
1秒前
Lucas应助舒心的板栗采纳,获得10
2秒前
一口一个小面包完成签到,获得积分10
2秒前
2秒前
3秒前
HIT_C完成签到 ,获得积分10
3秒前
yiduo发布了新的文献求助10
3秒前
yy完成签到,获得积分10
3秒前
Hello应助雨安采纳,获得10
4秒前
4秒前
5秒前
5秒前
SciGPT应助麻糬采纳,获得10
6秒前
ymbb发布了新的文献求助10
6秒前
爆米花应助WZ采纳,获得10
7秒前
hh完成签到,获得积分10
7秒前
天天发布了新的文献求助20
7秒前
7秒前
7秒前
7秒前
无心的翰发布了新的文献求助10
8秒前
科研通AI5应助噜啦噜啦采纳,获得10
9秒前
奶糖最可爱完成签到,获得积分10
9秒前
不晚发布了新的文献求助10
9秒前
NGC2237完成签到 ,获得积分10
10秒前
10秒前
wanci应助酷炫的大碗采纳,获得30
10秒前
了了发布了新的文献求助10
11秒前
年轻的藏花完成签到,获得积分10
11秒前
小薛老师完成签到,获得积分20
12秒前
科研通AI5应助啊嘞嘞采纳,获得10
12秒前
雨雨雨雨雨文完成签到 ,获得积分10
12秒前
xuancao发布了新的文献求助10
12秒前
12秒前
ding应助吃不起橘子了采纳,获得10
12秒前
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligonucleotide Synthesis: a Practical Approach 500
Plant–Pollinator Interactions: From Specialization to Generalization 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589616
求助须知:如何正确求助?哪些是违规求助? 3157911
关于积分的说明 9517962
捐赠科研通 2860977
什么是DOI,文献DOI怎么找? 1572123
邀请新用户注册赠送积分活动 737702
科研通“疑难数据库(出版商)”最低求助积分说明 722522