ESVFL: Efficient and secure verifiable federated learning with privacy-preserving

计算机科学 正确性 加密 可验证秘密共享 架空(工程) 云计算 服务器 安全多方计算 信息隐私 计算 分布式计算 计算机网络 计算机安全 密码学 算法 操作系统 集合(抽象数据类型) 程序设计语言
作者
Jiewang Cai,Wenting Shen,Jing Qin
出处
期刊:Information Fusion [Elsevier]
卷期号:109: 102420-102420 被引量:10
标识
DOI:10.1016/j.inffus.2024.102420
摘要

Federated learning has been widely applied as a distributed machine learning method in various fields, allowing a global model to be trained by sharing local gradients instead of raw data. However, direct sharing of local gradients still carries the risk of privacy data leakage, and the malicious server might falsify aggregated result to disrupt model updates. To address these issues, a lot of privacy-preserving and verifiable federated learning schemes have been proposed. However, existing schemes suffer from significant computation overhead in either encryption or verification. In this paper, we present ESVFL, an efficient and secure verifiable federated learning scheme with privacy-preserving. This scheme can simultaneously achieve low computation overhead for encryption and verification on the user side. We design an efficient privacy-preserving method to encrypt the users' local gradients. Using this method, the computation and communication overheads of encryption on the user side is independent of the number of users. Users can efficiently verify the correctness of aggregated results returned by the cloud servers using cross-verification. During the verification process, there is no interaction among users and no additional computation is required. Furthermore, we also construct an efficient method to address the issue of user dropout. When some users drop out, online users do not incur any additional computation and communication overheads, while guaranteeing the correctness of the aggregated result of online users' encrypted gradients. The security analysis and the performance evaluation demonstrate that ESVFL is secure and can achieve efficient encryption and verification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布噜噜噜噜完成签到,获得积分10
刚刚
喷火龙完成签到,获得积分10
刚刚
1秒前
岑岑岑发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
吃草草没发布了新的文献求助20
1秒前
oio778发布了新的文献求助10
2秒前
Tian完成签到,获得积分10
3秒前
Vresty完成签到 ,获得积分10
3秒前
思源应助小纸白采纳,获得10
3秒前
3秒前
赵田完成签到 ,获得积分10
3秒前
3秒前
赘婿应助Sean采纳,获得10
3秒前
longer发布了新的文献求助10
4秒前
4秒前
刘gugu发布了新的文献求助10
4秒前
嘻哈发布了新的文献求助10
4秒前
我是老大应助萧衡采纳,获得20
5秒前
5秒前
liv发布了新的文献求助10
5秒前
脑洞疼应助纳米采纳,获得10
6秒前
Jerry完成签到 ,获得积分10
7秒前
7秒前
Ftplanet发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
夏傥发布了新的文献求助10
8秒前
李成博发布了新的文献求助10
8秒前
9秒前
KDINO完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
@@@发布了新的文献求助10
10秒前
周一完成签到 ,获得积分10
10秒前
脑洞疼应助iKYy采纳,获得10
10秒前
星辰大海应助oio778采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505457
求助须知:如何正确求助?哪些是违规求助? 4601071
关于积分的说明 14475473
捐赠科研通 4535189
什么是DOI,文献DOI怎么找? 2485194
邀请新用户注册赠送积分活动 1468222
关于科研通互助平台的介绍 1440685