亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ESVFL: Efficient and secure verifiable federated learning with privacy-preserving

计算机科学 正确性 加密 可验证秘密共享 架空(工程) 云计算 服务器 安全多方计算 信息隐私 计算 分布式计算 计算机网络 计算机安全 密码学 算法 操作系统 集合(抽象数据类型) 程序设计语言
作者
Jiewang Cai,Wenting Shen,Jing Qin
出处
期刊:Information Fusion [Elsevier]
卷期号:109: 102420-102420 被引量:10
标识
DOI:10.1016/j.inffus.2024.102420
摘要

Federated learning has been widely applied as a distributed machine learning method in various fields, allowing a global model to be trained by sharing local gradients instead of raw data. However, direct sharing of local gradients still carries the risk of privacy data leakage, and the malicious server might falsify aggregated result to disrupt model updates. To address these issues, a lot of privacy-preserving and verifiable federated learning schemes have been proposed. However, existing schemes suffer from significant computation overhead in either encryption or verification. In this paper, we present ESVFL, an efficient and secure verifiable federated learning scheme with privacy-preserving. This scheme can simultaneously achieve low computation overhead for encryption and verification on the user side. We design an efficient privacy-preserving method to encrypt the users' local gradients. Using this method, the computation and communication overheads of encryption on the user side is independent of the number of users. Users can efficiently verify the correctness of aggregated results returned by the cloud servers using cross-verification. During the verification process, there is no interaction among users and no additional computation is required. Furthermore, we also construct an efficient method to address the issue of user dropout. When some users drop out, online users do not incur any additional computation and communication overheads, while guaranteeing the correctness of the aggregated result of online users' encrypted gradients. The security analysis and the performance evaluation demonstrate that ESVFL is secure and can achieve efficient encryption and verification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
18秒前
ClarkClarkson完成签到,获得积分10
18秒前
21秒前
qiaorankongling完成签到 ,获得积分10
24秒前
31秒前
38秒前
火之高兴发布了新的文献求助20
44秒前
47秒前
Dr发布了新的文献求助10
52秒前
Orange应助Dr采纳,获得10
58秒前
Dr完成签到,获得积分10
1分钟前
ZYP应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
ZYP应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
脑洞疼应助阿萨卡先生采纳,获得10
2分钟前
2分钟前
Cherry完成签到 ,获得积分10
2分钟前
3分钟前
zwang688完成签到,获得积分10
3分钟前
3分钟前
领导范儿应助wyx采纳,获得10
3分钟前
爆米花应助科研通管家采纳,获得10
3分钟前
英姑应助科研通管家采纳,获得10
3分钟前
4分钟前
激动的xx完成签到 ,获得积分10
5分钟前
涛老三完成签到 ,获得积分10
5分钟前
5分钟前
ZYP应助科研通管家采纳,获得10
5分钟前
6分钟前
蓝胖子完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
7分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5455081
求助须知:如何正确求助?哪些是违规求助? 4562276
关于积分的说明 14284999
捐赠科研通 4486239
什么是DOI,文献DOI怎么找? 2457270
邀请新用户注册赠送积分活动 1447880
关于科研通互助平台的介绍 1423164