ESVFL: Efficient and secure verifiable federated learning with privacy-preserving

计算机科学 正确性 加密 可验证秘密共享 架空(工程) 云计算 服务器 安全多方计算 信息隐私 计算 分布式计算 计算机网络 计算机安全 密码学 算法 操作系统 集合(抽象数据类型) 程序设计语言
作者
Jiewang Cai,Wenting Shen,Jing Qin
出处
期刊:Information Fusion [Elsevier]
卷期号:109: 102420-102420 被引量:10
标识
DOI:10.1016/j.inffus.2024.102420
摘要

Federated learning has been widely applied as a distributed machine learning method in various fields, allowing a global model to be trained by sharing local gradients instead of raw data. However, direct sharing of local gradients still carries the risk of privacy data leakage, and the malicious server might falsify aggregated result to disrupt model updates. To address these issues, a lot of privacy-preserving and verifiable federated learning schemes have been proposed. However, existing schemes suffer from significant computation overhead in either encryption or verification. In this paper, we present ESVFL, an efficient and secure verifiable federated learning scheme with privacy-preserving. This scheme can simultaneously achieve low computation overhead for encryption and verification on the user side. We design an efficient privacy-preserving method to encrypt the users' local gradients. Using this method, the computation and communication overheads of encryption on the user side is independent of the number of users. Users can efficiently verify the correctness of aggregated results returned by the cloud servers using cross-verification. During the verification process, there is no interaction among users and no additional computation is required. Furthermore, we also construct an efficient method to address the issue of user dropout. When some users drop out, online users do not incur any additional computation and communication overheads, while guaranteeing the correctness of the aggregated result of online users' encrypted gradients. The security analysis and the performance evaluation demonstrate that ESVFL is secure and can achieve efficient encryption and verification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一马当先霄完成签到,获得积分10
刚刚
刚刚
yq关注了科研通微信公众号
刚刚
墨酒发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
cuiyanjie发布了新的文献求助10
1秒前
科研通AI2S应助songyuan采纳,获得10
1秒前
冷冷子发布了新的文献求助10
1秒前
小小申发布了新的文献求助10
1秒前
cy完成签到 ,获得积分10
1秒前
我爱学习发布了新的文献求助10
2秒前
阿雅完成签到 ,获得积分10
2秒前
2秒前
琳毓完成签到,获得积分10
2秒前
hehe_198发布了新的文献求助10
2秒前
3秒前
小蘑菇应助欧皇陈书宝采纳,获得10
3秒前
英俊的铭应助鳄鱼叁叁采纳,获得10
3秒前
Zoki完成签到,获得积分10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
3秒前
orixero应助科研通管家采纳,获得10
3秒前
李健应助nyzcc采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
4秒前
深情安青应助小胳膊细腿采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
情怀应助LNF采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
万能图书馆应助黄金回旋采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
彭于晏应助椰子采纳,获得10
4秒前
正己化人应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得20
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512432
求助须知:如何正确求助?哪些是违规求助? 4606873
关于积分的说明 14501499
捐赠科研通 4542174
什么是DOI,文献DOI怎么找? 2488952
邀请新用户注册赠送积分活动 1470999
关于科研通互助平台的介绍 1443152