已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ESVFL: Efficient and secure verifiable federated learning with privacy-preserving

计算机科学 正确性 加密 可验证秘密共享 架空(工程) 云计算 服务器 安全多方计算 信息隐私 计算 分布式计算 计算机网络 计算机安全 密码学 算法 操作系统 集合(抽象数据类型) 程序设计语言
作者
Jiewang Cai,Wenting Shen,Jing Qin
出处
期刊:Information Fusion [Elsevier]
卷期号:109: 102420-102420 被引量:4
标识
DOI:10.1016/j.inffus.2024.102420
摘要

Federated learning has been widely applied as a distributed machine learning method in various fields, allowing a global model to be trained by sharing local gradients instead of raw data. However, direct sharing of local gradients still carries the risk of privacy data leakage, and the malicious server might falsify aggregated result to disrupt model updates. To address these issues, a lot of privacy-preserving and verifiable federated learning schemes have been proposed. However, existing schemes suffer from significant computation overhead in either encryption or verification. In this paper, we present ESVFL, an efficient and secure verifiable federated learning scheme with privacy-preserving. This scheme can simultaneously achieve low computation overhead for encryption and verification on the user side. We design an efficient privacy-preserving method to encrypt the users' local gradients. Using this method, the computation and communication overheads of encryption on the user side is independent of the number of users. Users can efficiently verify the correctness of aggregated results returned by the cloud servers using cross-verification. During the verification process, there is no interaction among users and no additional computation is required. Furthermore, we also construct an efficient method to address the issue of user dropout. When some users drop out, online users do not incur any additional computation and communication overheads, while guaranteeing the correctness of the aggregated result of online users' encrypted gradients. The security analysis and the performance evaluation demonstrate that ESVFL is secure and can achieve efficient encryption and verification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郑安之完成签到,获得积分20
2秒前
飞逝的快乐时光完成签到 ,获得积分10
2秒前
wang发布了新的文献求助10
3秒前
4秒前
能干的雨完成签到 ,获得积分10
5秒前
5秒前
Yang发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
14秒前
杨阿帆发布了新的文献求助10
14秒前
ding应助may采纳,获得10
15秒前
完美世界应助doudou采纳,获得10
18秒前
Singularity应助nwds采纳,获得10
22秒前
23秒前
23秒前
23秒前
24秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
汉堡包应助科研通管家采纳,获得10
25秒前
烟花应助科研通管家采纳,获得10
25秒前
bkagyin应助科研通管家采纳,获得10
25秒前
CodeCraft应助科研通管家采纳,获得10
25秒前
无花果应助科研通管家采纳,获得10
26秒前
英姑应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
Lhz应助科研通管家采纳,获得10
26秒前
xzy998应助科研通管家采纳,获得10
26秒前
26秒前
快乐的洋葱完成签到 ,获得积分10
27秒前
冷静的莞发布了新的文献求助10
27秒前
28秒前
gugugaga发布了新的文献求助10
30秒前
30秒前
CHyaa完成签到,获得积分10
31秒前
31秒前
panda关注了科研通微信公众号
33秒前
35秒前
gugugaga完成签到,获得积分10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136781
求助须知:如何正确求助?哪些是违规求助? 2787825
关于积分的说明 7783217
捐赠科研通 2443872
什么是DOI,文献DOI怎么找? 1299466
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954