ESVFL: Efficient and secure verifiable federated learning with privacy-preserving

计算机科学 正确性 加密 可验证秘密共享 架空(工程) 云计算 服务器 安全多方计算 信息隐私 计算 分布式计算 计算机网络 计算机安全 密码学 算法 操作系统 集合(抽象数据类型) 程序设计语言
作者
Jiewang Cai,Wenting Shen,Jing Qin
出处
期刊:Information Fusion [Elsevier]
卷期号:109: 102420-102420 被引量:10
标识
DOI:10.1016/j.inffus.2024.102420
摘要

Federated learning has been widely applied as a distributed machine learning method in various fields, allowing a global model to be trained by sharing local gradients instead of raw data. However, direct sharing of local gradients still carries the risk of privacy data leakage, and the malicious server might falsify aggregated result to disrupt model updates. To address these issues, a lot of privacy-preserving and verifiable federated learning schemes have been proposed. However, existing schemes suffer from significant computation overhead in either encryption or verification. In this paper, we present ESVFL, an efficient and secure verifiable federated learning scheme with privacy-preserving. This scheme can simultaneously achieve low computation overhead for encryption and verification on the user side. We design an efficient privacy-preserving method to encrypt the users' local gradients. Using this method, the computation and communication overheads of encryption on the user side is independent of the number of users. Users can efficiently verify the correctness of aggregated results returned by the cloud servers using cross-verification. During the verification process, there is no interaction among users and no additional computation is required. Furthermore, we also construct an efficient method to address the issue of user dropout. When some users drop out, online users do not incur any additional computation and communication overheads, while guaranteeing the correctness of the aggregated result of online users' encrypted gradients. The security analysis and the performance evaluation demonstrate that ESVFL is secure and can achieve efficient encryption and verification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
弎夜完成签到,获得积分10
刚刚
刚刚
33应助季思锐采纳,获得10
1秒前
Hanoi347应助季思锐采纳,获得10
1秒前
2秒前
freyaaaaa应助zzymarvel采纳,获得30
2秒前
量子星尘发布了新的文献求助10
2秒前
大白完成签到 ,获得积分10
2秒前
万能图书馆应助虚心虾米采纳,获得10
3秒前
Wlin完成签到,获得积分10
4秒前
iris2333发布了新的文献求助10
5秒前
Owen应助笨笨醉薇采纳,获得10
5秒前
ky完成签到,获得积分10
6秒前
枕上诗书应助倒计时采纳,获得30
8秒前
科研通AI6应助LQ采纳,获得30
9秒前
能干砖家完成签到,获得积分10
9秒前
zyy完成签到,获得积分10
9秒前
YYY完成签到,获得积分10
9秒前
Peter完成签到 ,获得积分10
10秒前
Maestro_S应助科研通管家采纳,获得30
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
Maestro_S应助科研通管家采纳,获得10
11秒前
11秒前
ccm应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
12秒前
mmichaell应助科研通管家采纳,获得10
12秒前
12秒前
Maestro_S应助科研通管家采纳,获得10
12秒前
MMP应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
Maestro_S应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
布丁应助李雪采纳,获得50
12秒前
Maestro_S应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
旺通通应助科研通管家采纳,获得10
13秒前
shhoing应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539951
求助须知:如何正确求助?哪些是违规求助? 4626664
关于积分的说明 14600296
捐赠科研通 4567592
什么是DOI,文献DOI怎么找? 2504101
邀请新用户注册赠送积分活动 1481828
关于科研通互助平台的介绍 1453419