亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ESVFL: Efficient and secure verifiable federated learning with privacy-preserving

计算机科学 正确性 加密 可验证秘密共享 架空(工程) 云计算 服务器 安全多方计算 信息隐私 计算 分布式计算 计算机网络 计算机安全 密码学 算法 操作系统 集合(抽象数据类型) 程序设计语言
作者
Jiewang Cai,Wenting Shen,Jing Qin
出处
期刊:Information Fusion [Elsevier]
卷期号:109: 102420-102420 被引量:10
标识
DOI:10.1016/j.inffus.2024.102420
摘要

Federated learning has been widely applied as a distributed machine learning method in various fields, allowing a global model to be trained by sharing local gradients instead of raw data. However, direct sharing of local gradients still carries the risk of privacy data leakage, and the malicious server might falsify aggregated result to disrupt model updates. To address these issues, a lot of privacy-preserving and verifiable federated learning schemes have been proposed. However, existing schemes suffer from significant computation overhead in either encryption or verification. In this paper, we present ESVFL, an efficient and secure verifiable federated learning scheme with privacy-preserving. This scheme can simultaneously achieve low computation overhead for encryption and verification on the user side. We design an efficient privacy-preserving method to encrypt the users' local gradients. Using this method, the computation and communication overheads of encryption on the user side is independent of the number of users. Users can efficiently verify the correctness of aggregated results returned by the cloud servers using cross-verification. During the verification process, there is no interaction among users and no additional computation is required. Furthermore, we also construct an efficient method to address the issue of user dropout. When some users drop out, online users do not incur any additional computation and communication overheads, while guaranteeing the correctness of the aggregated result of online users' encrypted gradients. The security analysis and the performance evaluation demonstrate that ESVFL is secure and can achieve efficient encryption and verification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
12秒前
24秒前
俊逸的平卉完成签到 ,获得积分10
27秒前
29秒前
sdniuidifod发布了新的文献求助10
30秒前
37秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
jyy发布了新的文献求助30
41秒前
46秒前
57秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
米线儿完成签到,获得积分10
1分钟前
1分钟前
1分钟前
潘润朗完成签到,获得积分10
1分钟前
1分钟前
1分钟前
坚定珩发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
星辰大海应助坚定珩采纳,获得10
2分钟前
Lan完成签到 ,获得积分10
2分钟前
2分钟前
高屋建瓴发布了新的文献求助10
2分钟前
2分钟前
坚定珩发布了新的文献求助10
2分钟前
minnie完成签到 ,获得积分10
2分钟前
ding应助科研通管家采纳,获得10
2分钟前
mmyhn应助科研通管家采纳,获得20
2分钟前
mmyhn应助科研通管家采纳,获得20
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
走啊走完成签到,获得积分10
2分钟前
狂野的安彤完成签到,获得积分10
2分钟前
Levent完成签到,获得积分10
2分钟前
Petrichor完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470075
求助须知:如何正确求助?哪些是违规求助? 4573030
关于积分的说明 14337942
捐赠科研通 4499936
什么是DOI,文献DOI怎么找? 2465485
邀请新用户注册赠送积分活动 1453834
关于科研通互助平台的介绍 1428409