Developing a visual model for predicting depression in patients with lung cancer

列线图 肺癌 医学 逻辑回归 萧条(经济学) 物理疗法 内科学 经济 宏观经济学
作者
Yanqing Xing,Wenxiao Zhao,Chen-Chen Duan,Jun Zheng,Xuelian Zhao,Jingyu Yang,Na Sun,Jie Chen
出处
期刊:Journal of Clinical Nursing [Wiley]
卷期号:32 (15-16): 4614-4625 被引量:5
标识
DOI:10.1111/jocn.16487
摘要

Abstract Aims and objectives To investigate and analyse the prevalence of depression among patients with lung cancer, identify risk factors of depression, and develop a visual, non‐invasive, and straightforward clinical prediction model that can be used to predict the risk probability of depression in patients with lung cancer quantitatively. Background Depression is one of the common concomitant symptoms of patients with lung cancer, which can increase the risk of suicide. However, the current assessment tools cannot combine multiple risk factors to predict the risk probability of depression in patients. Design A cross‐sectional study. Methods The clinical data from 297 patients with lung cancer in China were collected and analysed in this cross‐sectional study. The clinical prediction model was constructed according to the results of the Chi‐square test and the logistic regression analysis, evaluated by discrimination, calibration, and decision curve analysis, and visualised by a nomogram. This study was reported using the TRIPOD checklist. Results 130 patients with lung cancer had depressive symptoms with a prevalence of 43.77%. A visual prediction model was constructed based on age, disease duration, exercise, stigma, and resilience. This model showed good discrimination at an AUC of 0.842. Calibration curve analysis indicated a good agreement between experimental and predicted values, and the decision curve analysis showed a high clinical utility. Conclusions The visual prediction model developed in this study has excellent performance, which can accurately predict the occurrence of depression in patients with lung cancer at an early stage and assist the medical staff in taking targeted preventative measures. Relevance to clinical practice The visual, non‐invasive, and simple nomogram can help clinical medical staff to calculate the risk probability of depression among patients with lung cancer, formulate personalised preventive care measures for high‐risk groups as soon as possible, and improve the quality of life of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强的哈密瓜完成签到,获得积分10
刚刚
方百招完成签到,获得积分10
1秒前
1秒前
搜集达人应助RxX采纳,获得10
1秒前
joinn完成签到,获得积分10
1秒前
lqmentu完成签到,获得积分10
2秒前
慕青应助ZMY采纳,获得10
3秒前
4秒前
松松小白发布了新的文献求助10
5秒前
6秒前
小蘑菇应助归仔采纳,获得10
7秒前
8秒前
猪猪hero应助ldj6670采纳,获得10
8秒前
Akim应助十分喜欢采纳,获得10
8秒前
华仔应助一蓑烟雨任平生采纳,获得10
10秒前
NexusExplorer应助Hesse采纳,获得10
10秒前
可爱的函函应助吴家辉采纳,获得10
10秒前
苏苏发布了新的文献求助10
11秒前
11秒前
11秒前
14秒前
15秒前
万能图书馆应助墨客采纳,获得10
15秒前
linna发布了新的文献求助10
15秒前
15秒前
lllllllll发布了新的文献求助10
15秒前
16秒前
景穆完成签到,获得积分10
16秒前
小太阳发布了新的文献求助10
17秒前
18秒前
YYONE完成签到,获得积分10
18秒前
20秒前
可爱的函函应助allrubbish采纳,获得10
20秒前
02完成签到,获得积分10
20秒前
ZMY发布了新的文献求助10
20秒前
可靠觅珍应助C.Cat采纳,获得50
21秒前
wanci应助难过千易采纳,获得10
23秒前
汉堡包应助Aaron采纳,获得10
23秒前
华仔应助YYONE采纳,获得10
23秒前
1111完成签到,获得积分10
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975339
求助须知:如何正确求助?哪些是违规求助? 3519670
关于积分的说明 11199199
捐赠科研通 3256002
什么是DOI,文献DOI怎么找? 1798043
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305