已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Developing a visual model for predicting depression in patients with lung cancer

列线图 肺癌 医学 逻辑回归 萧条(经济学) 接收机工作特性 阶段(地层学) 物理疗法 内科学 生物 宏观经济学 古生物学 经济
作者
Yanqing Xing,Wenxiao Zhao,Chenchen Duan,Jun Zheng,Xuelian Zhao,Jingyu Yang,Na Sun,Jie Chen
出处
期刊:Journal of Clinical Nursing [Wiley]
卷期号:32 (15-16): 4614-4625 被引量:1
标识
DOI:10.1111/jocn.16487
摘要

Aims and objectives To investigate and analyse the prevalence of depression among patients with lung cancer, identify risk factors of depression, and develop a visual, non-invasive, and straightforward clinical prediction model that can be used to predict the risk probability of depression in patients with lung cancer quantitatively. Background Depression is one of the common concomitant symptoms of patients with lung cancer, which can increase the risk of suicide. However, the current assessment tools cannot combine multiple risk factors to predict the risk probability of depression in patients. Design A cross-sectional study. Methods The clinical data from 297 patients with lung cancer in China were collected and analysed in this cross-sectional study. The clinical prediction model was constructed according to the results of the Chi-square test and the logistic regression analysis, evaluated by discrimination, calibration, and decision curve analysis, and visualised by a nomogram. This study was reported using the TRIPOD checklist. Results 130 patients with lung cancer had depressive symptoms with a prevalence of 43.77%. A visual prediction model was constructed based on age, disease duration, exercise, stigma, and resilience. This model showed good discrimination at an AUC of 0.842. Calibration curve analysis indicated a good agreement between experimental and predicted values, and the decision curve analysis showed a high clinical utility. Conclusions The visual prediction model developed in this study has excellent performance, which can accurately predict the occurrence of depression in patients with lung cancer at an early stage and assist the medical staff in taking targeted preventative measures. Relevance to clinical practice The visual, non-invasive, and simple nomogram can help clinical medical staff to calculate the risk probability of depression among patients with lung cancer, formulate personalised preventive care measures for high-risk groups as soon as possible, and improve the quality of life of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuliu发布了新的文献求助10
2秒前
牧羊少年发布了新的文献求助10
4秒前
番茄发布了新的文献求助10
5秒前
8秒前
王梦瑶完成签到 ,获得积分10
9秒前
迅速的仰发布了新的文献求助10
13秒前
十七完成签到 ,获得积分10
14秒前
yuaner发布了新的文献求助10
15秒前
安详的冷安完成签到,获得积分10
16秒前
脚踏实地呢完成签到 ,获得积分10
16秒前
研友_LjMy08发布了新的文献求助10
17秒前
18秒前
俏皮的一德完成签到,获得积分10
18秒前
19秒前
19秒前
Bowingyang发布了新的文献求助10
24秒前
L文甬应助ljh1771采纳,获得50
24秒前
24秒前
liuliu发布了新的文献求助10
25秒前
25秒前
迅速的仰完成签到,获得积分10
26秒前
29秒前
30秒前
酷波er应助Bowingyang采纳,获得10
30秒前
Jasper应助迅速的仰采纳,获得30
30秒前
志哥发布了新的文献求助10
36秒前
37秒前
Bowingyang完成签到,获得积分20
37秒前
血茗完成签到 ,获得积分10
38秒前
39秒前
40秒前
惟依发布了新的文献求助10
43秒前
45秒前
Dsivan发布了新的文献求助10
47秒前
呆瓜完成签到,获得积分10
51秒前
负责丹亦发布了新的文献求助10
51秒前
Abmony驳回了zgsn应助
53秒前
ciiiv完成签到 ,获得积分10
58秒前
英姑应助lyfrey采纳,获得10
59秒前
Pursue完成签到,获得积分10
1分钟前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164682
求助须知:如何正确求助?哪些是违规求助? 2815604
关于积分的说明 7909897
捐赠科研通 2475236
什么是DOI,文献DOI怎么找? 1318049
科研通“疑难数据库(出版商)”最低求助积分说明 631984
版权声明 602282