亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Developing a visual model for predicting depression in patients with lung cancer

列线图 肺癌 医学 逻辑回归 萧条(经济学) 物理疗法 内科学 经济 宏观经济学
作者
Yanqing Xing,Wenxiao Zhao,Chen-Chen Duan,Jun Zheng,Xuelian Zhao,Jingyu Yang,Na Sun,Jie Chen
出处
期刊:Journal of Clinical Nursing [Wiley]
卷期号:32 (15-16): 4614-4625 被引量:7
标识
DOI:10.1111/jocn.16487
摘要

Abstract Aims and objectives To investigate and analyse the prevalence of depression among patients with lung cancer, identify risk factors of depression, and develop a visual, non‐invasive, and straightforward clinical prediction model that can be used to predict the risk probability of depression in patients with lung cancer quantitatively. Background Depression is one of the common concomitant symptoms of patients with lung cancer, which can increase the risk of suicide. However, the current assessment tools cannot combine multiple risk factors to predict the risk probability of depression in patients. Design A cross‐sectional study. Methods The clinical data from 297 patients with lung cancer in China were collected and analysed in this cross‐sectional study. The clinical prediction model was constructed according to the results of the Chi‐square test and the logistic regression analysis, evaluated by discrimination, calibration, and decision curve analysis, and visualised by a nomogram. This study was reported using the TRIPOD checklist. Results 130 patients with lung cancer had depressive symptoms with a prevalence of 43.77%. A visual prediction model was constructed based on age, disease duration, exercise, stigma, and resilience. This model showed good discrimination at an AUC of 0.842. Calibration curve analysis indicated a good agreement between experimental and predicted values, and the decision curve analysis showed a high clinical utility. Conclusions The visual prediction model developed in this study has excellent performance, which can accurately predict the occurrence of depression in patients with lung cancer at an early stage and assist the medical staff in taking targeted preventative measures. Relevance to clinical practice The visual, non‐invasive, and simple nomogram can help clinical medical staff to calculate the risk probability of depression among patients with lung cancer, formulate personalised preventive care measures for high‐risk groups as soon as possible, and improve the quality of life of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
10秒前
乐乐应助逍遥子0211采纳,获得10
10秒前
ab完成签到,获得积分10
13秒前
汌舟完成签到,获得积分10
14秒前
赘婿应助鹿小娇采纳,获得10
14秒前
15秒前
会飞的蜗牛完成签到,获得积分10
19秒前
20秒前
JamesPei应助会飞的蜗牛采纳,获得10
22秒前
25秒前
model发布了新的文献求助10
26秒前
迷路竹发布了新的文献求助10
29秒前
32秒前
鹿小娇发布了新的文献求助10
37秒前
41秒前
3D完成签到 ,获得积分10
46秒前
逍遥子0211发布了新的文献求助10
47秒前
科研通AI5应助科研通管家采纳,获得30
54秒前
研友_VZG7GZ应助科研通管家采纳,获得10
54秒前
ceeray23应助科研通管家采纳,获得10
54秒前
w1x2123完成签到,获得积分0
54秒前
SallyLulu完成签到 ,获得积分10
59秒前
婷123完成签到 ,获得积分10
1分钟前
悄悄完成签到,获得积分10
1分钟前
1分钟前
乌拉拉啦啦啦完成签到 ,获得积分10
1分钟前
酷波er应助zsbd采纳,获得10
1分钟前
1分钟前
小马甲应助直率的外套采纳,获得10
1分钟前
purist发布了新的文献求助30
1分钟前
科研通AI5应助能干的人采纳,获得10
1分钟前
自然谷秋发布了新的文献求助10
1分钟前
友好胜完成签到 ,获得积分10
1分钟前
在水一方应助逍遥子0211采纳,获得10
1分钟前
1分钟前
atmcymed发布了新的文献求助30
1分钟前
1分钟前
严珍珍完成签到 ,获得积分10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210066
求助须知:如何正确求助?哪些是违规求助? 4387034
关于积分的说明 13662169
捐赠科研通 4246614
什么是DOI,文献DOI怎么找? 2329858
邀请新用户注册赠送积分活动 1327575
关于科研通互助平台的介绍 1280072