BTG: A Bridge to Graph machine learning in telecommunications fraud detection

计算机科学 图形 异常检测 数据挖掘 人工智能 机器学习 理论计算机科学
作者
Xinxin Hu,Hongchang Chen,Shuxin Liu,Haocong Jiang,Guanghan Chu,Ran Li
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:137: 274-287 被引量:20
标识
DOI:10.1016/j.future.2022.07.020
摘要

Telecommunications fraud runs rampant recently around the world. Therefore, how to effectively detect fraudsters has become an increasingly challenging problem. However, previous studies either assume that the samples are independent of each other and use non-graph methods, or use local subgraphs with good connectivity for graph-based anomaly detection. Few prior works have performed graph-based fraud detection on real-world Call Detail Records (CDR) meta data sets with sparse connectivity. To solve this problem, we propose an end-to-end telecommunications fraud detection framework named Bridge To Graph (BTG). BTG leverages the subscriber synergy behavior to reconstruct connectivity, which bridges the gap between sparse connectivity data and graph machine learning. Concretely, we extract multi-model features from meta data and perform Box–Cox transformation first. Then, aiming at the sparse connectivity of real-world CDR meta data, the graph is reconstructed through dimensionally selectable link prediction of node similarity. Finally, the reconstructed graph and node features are input into the graph machine learning module for node embedding representation learning and fraud node classification. Comprehensive experiments on the real-world telecommunications network CDR data set show that our proposed method outperforms the classic methods in many metrics. Beyond telecom fraud detection, our method can also be extended to anomaly detection scenarios with no graph or sparse connectivity graph.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
公孙朝雨完成签到,获得积分10
1秒前
朱道斌完成签到,获得积分10
1秒前
1秒前
1秒前
tao应助PetrichorF采纳,获得10
2秒前
天天快乐应助明月清风采纳,获得10
2秒前
遂安完成签到,获得积分10
2秒前
JamesPei应助愉快的哈密瓜采纳,获得10
2秒前
Yian完成签到,获得积分10
2秒前
2秒前
科研小白完成签到,获得积分10
3秒前
小茹发布了新的文献求助10
3秒前
欢喜沛珊发布了新的文献求助20
3秒前
细腻煎饼完成签到 ,获得积分10
4秒前
nihaoya172发布了新的文献求助30
4秒前
开心千青发布了新的文献求助10
4秒前
4秒前
了尘发布了新的文献求助10
4秒前
5秒前
火星上友易完成签到,获得积分10
5秒前
格格巫完成签到 ,获得积分10
5秒前
一个土豆完成签到,获得积分10
6秒前
宁听白完成签到,获得积分10
6秒前
亚宁发布了新的文献求助30
6秒前
忧伤的宝马完成签到,获得积分10
7秒前
田兆文关注了科研通微信公众号
7秒前
随心所欲发布了新的文献求助100
7秒前
7秒前
可爱凡波发布了新的文献求助10
7秒前
8秒前
Zer关注了科研通微信公众号
8秒前
体贴向珊完成签到,获得积分10
8秒前
所所应助蝃蝀采纳,获得10
8秒前
游戏人间完成签到 ,获得积分10
9秒前
xczhu发布了新的文献求助10
9秒前
PMY发布了新的文献求助10
9秒前
姜姜完成签到,获得积分10
10秒前
小易同学完成签到,获得积分10
11秒前
开心千青完成签到,获得积分10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307830
求助须知:如何正确求助?哪些是违规求助? 2941398
关于积分的说明 8503161
捐赠科研通 2615878
什么是DOI,文献DOI怎么找? 1429249
科研通“疑难数据库(出版商)”最低求助积分说明 663679
邀请新用户注册赠送积分活动 648650