BTG: A Bridge to Graph machine learning in telecommunications fraud detection

计算机科学 图形 异常检测 数据挖掘 人工智能 机器学习 理论计算机科学
作者
Xinxin Hu,Hongchang Chen,Shuxin Liu,Haocong Jiang,Guanghan Chu,Ran Li
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:137: 274-287 被引量:25
标识
DOI:10.1016/j.future.2022.07.020
摘要

Telecommunications fraud runs rampant recently around the world. Therefore, how to effectively detect fraudsters has become an increasingly challenging problem. However, previous studies either assume that the samples are independent of each other and use non-graph methods, or use local subgraphs with good connectivity for graph-based anomaly detection. Few prior works have performed graph-based fraud detection on real-world Call Detail Records (CDR) meta data sets with sparse connectivity. To solve this problem, we propose an end-to-end telecommunications fraud detection framework named Bridge To Graph (BTG). BTG leverages the subscriber synergy behavior to reconstruct connectivity, which bridges the gap between sparse connectivity data and graph machine learning. Concretely, we extract multi-model features from meta data and perform Box–Cox transformation first. Then, aiming at the sparse connectivity of real-world CDR meta data, the graph is reconstructed through dimensionally selectable link prediction of node similarity. Finally, the reconstructed graph and node features are input into the graph machine learning module for node embedding representation learning and fraud node classification. Comprehensive experiments on the real-world telecommunications network CDR data set show that our proposed method outperforms the classic methods in many metrics. Beyond telecom fraud detection, our method can also be extended to anomaly detection scenarios with no graph or sparse connectivity graph.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助wzc采纳,获得10
刚刚
1秒前
1秒前
2秒前
英姑应助白白采纳,获得10
2秒前
毛思惠发布了新的文献求助10
3秒前
JamesPei应助Endymion采纳,获得10
3秒前
coffee完成签到,获得积分10
3秒前
充电宝应助发发采纳,获得10
4秒前
4秒前
学习猴完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
抗压的希儿完成签到,获得积分10
6秒前
6秒前
7秒前
liangs完成签到,获得积分10
8秒前
8秒前
晴天发布了新的文献求助10
9秒前
冷静剑成发布了新的文献求助10
9秒前
9秒前
fangfeng完成签到,获得积分20
10秒前
10秒前
10秒前
明亮冰颜发布了新的文献求助10
10秒前
roclie发布了新的文献求助10
11秒前
11秒前
观潮应助左云山采纳,获得10
11秒前
星辰大海应助咕噜噜噜采纳,获得10
11秒前
12秒前
6666应助小马采纳,获得10
12秒前
你说要叫啥完成签到,获得积分10
13秒前
13秒前
大方的向日葵完成签到,获得积分20
13秒前
矢车菊发布了新的文献求助10
13秒前
慕青应助清脆的月饼采纳,获得10
14秒前
邓佳鑫Alan举报Yangqx007求助涉嫌违规
14秒前
大家好完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735561
求助须知:如何正确求助?哪些是违规求助? 5361164
关于积分的说明 15330348
捐赠科研通 4879711
什么是DOI,文献DOI怎么找? 2622247
邀请新用户注册赠送积分活动 1571285
关于科研通互助平台的介绍 1528138