亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BTG: A Bridge to Graph machine learning in telecommunications fraud detection

计算机科学 图形 异常检测 数据挖掘 人工智能 机器学习 理论计算机科学
作者
Xinxin Hu,Hongchang Chen,Shuxin Liu,Haocong Jiang,Guanghan Chu,Ran Li
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:137: 274-287 被引量:25
标识
DOI:10.1016/j.future.2022.07.020
摘要

Telecommunications fraud runs rampant recently around the world. Therefore, how to effectively detect fraudsters has become an increasingly challenging problem. However, previous studies either assume that the samples are independent of each other and use non-graph methods, or use local subgraphs with good connectivity for graph-based anomaly detection. Few prior works have performed graph-based fraud detection on real-world Call Detail Records (CDR) meta data sets with sparse connectivity. To solve this problem, we propose an end-to-end telecommunications fraud detection framework named Bridge To Graph (BTG). BTG leverages the subscriber synergy behavior to reconstruct connectivity, which bridges the gap between sparse connectivity data and graph machine learning. Concretely, we extract multi-model features from meta data and perform Box–Cox transformation first. Then, aiming at the sparse connectivity of real-world CDR meta data, the graph is reconstructed through dimensionally selectable link prediction of node similarity. Finally, the reconstructed graph and node features are input into the graph machine learning module for node embedding representation learning and fraud node classification. Comprehensive experiments on the real-world telecommunications network CDR data set show that our proposed method outperforms the classic methods in many metrics. Beyond telecom fraud detection, our method can also be extended to anomaly detection scenarios with no graph or sparse connectivity graph.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
LAVINE完成签到 ,获得积分10
8秒前
Lucas应助典雅的纸飞机采纳,获得10
13秒前
非典型骨质疏松完成签到,获得积分10
13秒前
科研通AI2S应助浮名半生采纳,获得10
21秒前
Tatotota应助yyyalles采纳,获得10
23秒前
嘻嘻完成签到,获得积分10
28秒前
Tatotota应助HHHH采纳,获得10
30秒前
30秒前
浮名半生发布了新的文献求助10
33秒前
搜集达人应助科研通管家采纳,获得10
50秒前
50秒前
科研通AI5应助科研通管家采纳,获得30
50秒前
调皮乌冬面完成签到,获得积分10
50秒前
我是老大应助外向不愁采纳,获得10
51秒前
领导范儿应助wwww采纳,获得10
53秒前
58秒前
人谷完成签到 ,获得积分10
1分钟前
1分钟前
科研小狗完成签到 ,获得积分10
1分钟前
1分钟前
隐形曼青应助yyyalles采纳,获得10
1分钟前
Orange应助An采纳,获得10
1分钟前
狗头发布了新的文献求助10
1分钟前
痴情的博超应助FFF采纳,获得30
1分钟前
1分钟前
1分钟前
wwww发布了新的文献求助10
1分钟前
An发布了新的文献求助10
1分钟前
可爱的函函应助负责吃饭采纳,获得30
1分钟前
1分钟前
月亮完成签到 ,获得积分10
1分钟前
爆米花应助狗头采纳,获得10
1分钟前
ab发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
yyyalles发布了新的文献求助10
1分钟前
外向不愁发布了新的文献求助10
1分钟前
爱吃猫的鱼完成签到,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963149
求助须知:如何正确求助?哪些是违规求助? 3509051
关于积分的说明 11144989
捐赠科研通 3242106
什么是DOI,文献DOI怎么找? 1791744
邀请新用户注册赠送积分活动 873127
科研通“疑难数据库(出版商)”最低求助积分说明 803622