An identification method of floating wind turbine tower responses using deep learning technology in the monitoring system

塔楼 加速度 海洋工程 涡轮机 工程类 采样(信号处理) 模拟 结构工程 计算机科学 航空航天工程 电气工程 经典力学 滤波器(信号处理) 物理
作者
Ziming Wang,Dongsheng Qiao,Guoqiang Tang,Bin Wang,Jun Yan,Jinping Ou
出处
期刊:Ocean Engineering [Elsevier]
卷期号:261: 112105-112105 被引量:18
标识
DOI:10.1016/j.oceaneng.2022.112105
摘要

The acceleration at the tower top and the force on the tower root are the critical indicators for the structural safety of floating wind turbine (FOWT) towers. However, the corresponding monitoring sensors are prone to failure due to the harsh marine environment. Based on the coupling relationship between the tower force and the floating foundation motion responses, a method for identifying the tower top acceleration and the tower root force is proposed based on deep learning technology. Firstly, a 10 MW FOWT model is numerically simulated to obtain the corresponding responses through OpenFAST. Secondly, a multi-layer perception (MLP) model is constructed and trained. The process of determining the optimal sampling frequency is presented. Finally, the single-state and multi-state cases are studied to verify the feasibility of the proposed method. The results show that the proposed method has shown excellent performance in identifying the tower top acceleration and tower root force, which demonstrates its great promise in the field of smart health monitoring technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小乐儿~完成签到,获得积分10
2秒前
2秒前
wanci应助xingfangshu采纳,获得10
2秒前
香蕉觅云应助xingfangshu采纳,获得10
3秒前
687完成签到,获得积分10
6秒前
领导范儿应助Yeshenyue采纳,获得10
7秒前
wifi发布了新的文献求助10
7秒前
8秒前
8秒前
10秒前
10秒前
脑洞疼应助HH采纳,获得10
11秒前
11秒前
12秒前
12秒前
12秒前
无花果应助凸迩丝儿采纳,获得10
13秒前
善学以致用应助钱罐罐采纳,获得10
13秒前
大人发布了新的文献求助10
14秒前
14秒前
余晶晶发布了新的文献求助10
15秒前
甜甜青旋发布了新的文献求助10
15秒前
深情安青应助危机的芝麻采纳,获得10
16秒前
小夜发布了新的文献求助10
16秒前
王昕钥完成签到,获得积分10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
在水一方应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
17秒前
彭于晏应助科研通管家采纳,获得30
17秒前
Orange应助科研通管家采纳,获得10
17秒前
华仔应助科研通管家采纳,获得10
17秒前
kentonchow应助科研通管家采纳,获得10
17秒前
kentonchow应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得10
17秒前
小杭76应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5399809
求助须知:如何正确求助?哪些是违规求助? 4519252
关于积分的说明 14074229
捐赠科研通 4432023
什么是DOI,文献DOI怎么找? 2433408
邀请新用户注册赠送积分活动 1425754
关于科研通互助平台的介绍 1404500