Learning low‐dose CT degradation from unpaired data with flow‐based model

人工智能 深度学习 降噪 监督学习 模式识别(心理学) 计算机科学 噪音(视频) 人工神经网络 图像(数学) 机器学习 计算机视觉
作者
Xuan Liu,Xiaokun Liang,Lei Deng,Shan Tan,Yaoqin Xie
出处
期刊:Medical Physics [Wiley]
卷期号:49 (12): 7516-7530 被引量:6
标识
DOI:10.1002/mp.15886
摘要

Abstract Background There has been growing interest in low‐dose computed tomography (LDCT) for reducing the X‐ray radiation to patients. However, LDCT always suffers from complex noise in reconstructed images. Although deep learning‐based methods have shown their strong performance in LDCT denoising, most of them require a large number of paired training data of normal‐dose CT (NDCT) images and LDCT images, which are hard to acquire in the clinic. Lack of paired training data significantly undermines the practicability of supervised deep learning‐based methods. To alleviate this problem, unsupervised or weakly supervised deep learning‐based methods are required. Purpose We aimed to propose a method that achieves LDCT denoising without training pairs. Specifically, we first trained a neural network in a weakly supervised manner to simulate LDCT images from NDCT images. Then, simulated training pairs could be used for supervised deep denoising networks. Methods We proposed a weakly supervised method to learn the degradation of LDCT from unpaired LDCT and NDCT images. Concretely, LDCT and normal‐dose images were fed into one shared flow‐based model and projected to the latent space. Then, the degradation between low‐dose and normal‐dose images was modeled in the latent space. Finally, the model was trained by minimizing the negative log‐likelihood loss with no requirement of paired training data. After training, an NDCT image can be input to the trained flow‐based model to generate the corresponding LDCT image. The simulated image pairs of NDCT and LDCT can be further used to train supervised denoising neural networks for test. Results Our method achieved much better performance on LDCT image simulation compared with the most widely used image‐to‐image translation method, CycleGAN, according to the radial noise power spectrum. The simulated image pairs could be used for any supervised LDCT denoising neural networks. We validated the effectiveness of our generated image pairs on a classic convolutional neural network, REDCNN, and a novel transformer‐based model, TransCT. Our method achieved mean peak signal‐to‐noise ratio (PSNR) of 24.43dB, mean structural similarity (SSIM) of 0.785 on an abdomen CT dataset, mean PSNR of 33.88dB, mean SSIM of 0.797 on a chest CT dataset, which outperformed several traditional CT denoising methods, the same network trained by CycleGAN‐generated data, and a novel transfer learning method. Besides, our method was on par with the supervised networks in terms of visual effects. Conclusion We proposed a flow‐based method to learn LDCT degradation from only unpaired training data. It achieved impressive performance on LDCT synthesis. Next, we could train neural networks with the generated paired data for LDCT denoising. The denoising results are better than traditional and weakly supervised methods, comparable to supervised deep learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
凌小飞侠发布了新的文献求助10
刚刚
小T儿完成签到,获得积分10
刚刚
MicroCytoYL发布了新的文献求助10
刚刚
yzy发布了新的文献求助10
1秒前
从来都不会放弃zr完成签到,获得积分10
1秒前
点点发布了新的文献求助10
1秒前
科研通AI2S应助Feng采纳,获得10
1秒前
张小小完成签到,获得积分10
1秒前
hata发布了新的文献求助10
2秒前
2秒前
yangyangyang发布了新的文献求助10
2秒前
keran发布了新的文献求助10
2秒前
shin0324完成签到,获得积分10
3秒前
pencil123应助易达采纳,获得10
3秒前
守约完成签到,获得积分10
4秒前
5秒前
5秒前
愤怒的之玉完成签到 ,获得积分10
6秒前
6秒前
欧阳小枫完成签到,获得积分10
6秒前
江海下百川完成签到,获得积分10
6秒前
6秒前
JamesPei应助小宇采纳,获得10
7秒前
7秒前
阿桂完成签到,获得积分10
7秒前
7秒前
沙比完成签到,获得积分10
8秒前
一一完成签到,获得积分10
8秒前
MicroCytoYL完成签到,获得积分10
9秒前
9秒前
一只特立独行的朱完成签到,获得积分10
9秒前
步行街车神ahua完成签到,获得积分10
9秒前
9秒前
keran完成签到,获得积分20
9秒前
1111发布了新的文献求助10
9秒前
动如脱兔发布了新的文献求助10
10秒前
starry完成签到,获得积分10
10秒前
11秒前
Grayball应助愉快的冰珍采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672