Learning low‐dose CT degradation from unpaired data with flow‐based model

人工智能 深度学习 降噪 监督学习 模式识别(心理学) 计算机科学 噪音(视频) 人工神经网络 医学影像学 图像(数学) 机器学习 计算机视觉
作者
Xuan Liu,Xiaokun Liang,Lei Deng,Shan Tan,Yaoqin Xie
出处
期刊:Medical Physics [Wiley]
卷期号:49 (12): 7516-7530 被引量:10
标识
DOI:10.1002/mp.15886
摘要

Abstract Background There has been growing interest in low‐dose computed tomography (LDCT) for reducing the X‐ray radiation to patients. However, LDCT always suffers from complex noise in reconstructed images. Although deep learning‐based methods have shown their strong performance in LDCT denoising, most of them require a large number of paired training data of normal‐dose CT (NDCT) images and LDCT images, which are hard to acquire in the clinic. Lack of paired training data significantly undermines the practicability of supervised deep learning‐based methods. To alleviate this problem, unsupervised or weakly supervised deep learning‐based methods are required. Purpose We aimed to propose a method that achieves LDCT denoising without training pairs. Specifically, we first trained a neural network in a weakly supervised manner to simulate LDCT images from NDCT images. Then, simulated training pairs could be used for supervised deep denoising networks. Methods We proposed a weakly supervised method to learn the degradation of LDCT from unpaired LDCT and NDCT images. Concretely, LDCT and normal‐dose images were fed into one shared flow‐based model and projected to the latent space. Then, the degradation between low‐dose and normal‐dose images was modeled in the latent space. Finally, the model was trained by minimizing the negative log‐likelihood loss with no requirement of paired training data. After training, an NDCT image can be input to the trained flow‐based model to generate the corresponding LDCT image. The simulated image pairs of NDCT and LDCT can be further used to train supervised denoising neural networks for test. Results Our method achieved much better performance on LDCT image simulation compared with the most widely used image‐to‐image translation method, CycleGAN, according to the radial noise power spectrum. The simulated image pairs could be used for any supervised LDCT denoising neural networks. We validated the effectiveness of our generated image pairs on a classic convolutional neural network, REDCNN, and a novel transformer‐based model, TransCT. Our method achieved mean peak signal‐to‐noise ratio (PSNR) of 24.43dB, mean structural similarity (SSIM) of 0.785 on an abdomen CT dataset, mean PSNR of 33.88dB, mean SSIM of 0.797 on a chest CT dataset, which outperformed several traditional CT denoising methods, the same network trained by CycleGAN‐generated data, and a novel transfer learning method. Besides, our method was on par with the supervised networks in terms of visual effects. Conclusion We proposed a flow‐based method to learn LDCT degradation from only unpaired training data. It achieved impressive performance on LDCT synthesis. Next, we could train neural networks with the generated paired data for LDCT denoising. The denoising results are better than traditional and weakly supervised methods, comparable to supervised deep learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助Lynn采纳,获得10
刚刚
Messi发布了新的文献求助10
4秒前
蓝天应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
GE应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
7秒前
田様应助科研通管家采纳,获得10
7秒前
Verity应助科研通管家采纳,获得20
8秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
蓝天应助科研通管家采纳,获得20
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
Lumos完成签到,获得积分10
10秒前
11秒前
13秒前
拉拉噜噜发布了新的文献求助10
15秒前
Iridescent发布了新的文献求助10
17秒前
17秒前
慕青应助Messi采纳,获得10
18秒前
桐桐应助李天王采纳,获得30
19秒前
20秒前
21秒前
大模型应助gkkkk采纳,获得10
21秒前
玻璃发布了新的文献求助10
23秒前
23秒前
24秒前
学术地雷发布了新的文献求助10
24秒前
天天快乐应助huanir99采纳,获得80
24秒前
NexusExplorer应助橙子采纳,获得10
24秒前
舒心的飞双完成签到,获得积分10
25秒前
25秒前
辣姐给辣姐的求助进行了留言
26秒前
啊哈发布了新的文献求助10
27秒前
30秒前
Verity应助甜蜜花采纳,获得10
31秒前
谨慎青亦发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560383
求助须知:如何正确求助?哪些是违规求助? 4645517
关于积分的说明 14675412
捐赠科研通 4586664
什么是DOI,文献DOI怎么找? 2516501
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951