Learning low‐dose CT degradation from unpaired data with flow‐based model

人工智能 深度学习 降噪 监督学习 模式识别(心理学) 计算机科学 噪音(视频) 人工神经网络 图像(数学) 机器学习 计算机视觉
作者
Xuan Liu,Xiaokun Liang,Lei Deng,Shan Tan,Yaoqin Xie
出处
期刊:Medical Physics [Wiley]
卷期号:49 (12): 7516-7530 被引量:6
标识
DOI:10.1002/mp.15886
摘要

Abstract Background There has been growing interest in low‐dose computed tomography (LDCT) for reducing the X‐ray radiation to patients. However, LDCT always suffers from complex noise in reconstructed images. Although deep learning‐based methods have shown their strong performance in LDCT denoising, most of them require a large number of paired training data of normal‐dose CT (NDCT) images and LDCT images, which are hard to acquire in the clinic. Lack of paired training data significantly undermines the practicability of supervised deep learning‐based methods. To alleviate this problem, unsupervised or weakly supervised deep learning‐based methods are required. Purpose We aimed to propose a method that achieves LDCT denoising without training pairs. Specifically, we first trained a neural network in a weakly supervised manner to simulate LDCT images from NDCT images. Then, simulated training pairs could be used for supervised deep denoising networks. Methods We proposed a weakly supervised method to learn the degradation of LDCT from unpaired LDCT and NDCT images. Concretely, LDCT and normal‐dose images were fed into one shared flow‐based model and projected to the latent space. Then, the degradation between low‐dose and normal‐dose images was modeled in the latent space. Finally, the model was trained by minimizing the negative log‐likelihood loss with no requirement of paired training data. After training, an NDCT image can be input to the trained flow‐based model to generate the corresponding LDCT image. The simulated image pairs of NDCT and LDCT can be further used to train supervised denoising neural networks for test. Results Our method achieved much better performance on LDCT image simulation compared with the most widely used image‐to‐image translation method, CycleGAN, according to the radial noise power spectrum. The simulated image pairs could be used for any supervised LDCT denoising neural networks. We validated the effectiveness of our generated image pairs on a classic convolutional neural network, REDCNN, and a novel transformer‐based model, TransCT. Our method achieved mean peak signal‐to‐noise ratio (PSNR) of 24.43dB, mean structural similarity (SSIM) of 0.785 on an abdomen CT dataset, mean PSNR of 33.88dB, mean SSIM of 0.797 on a chest CT dataset, which outperformed several traditional CT denoising methods, the same network trained by CycleGAN‐generated data, and a novel transfer learning method. Besides, our method was on par with the supervised networks in terms of visual effects. Conclusion We proposed a flow‐based method to learn LDCT degradation from only unpaired training data. It achieved impressive performance on LDCT synthesis. Next, we could train neural networks with the generated paired data for LDCT denoising. The denoising results are better than traditional and weakly supervised methods, comparable to supervised deep learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
abandon完成签到 ,获得积分10
2秒前
思源应助典雅不凡采纳,获得10
3秒前
阔达的凡发布了新的文献求助10
4秒前
科研通AI2S应助alex采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
5秒前
苏卿应助科研通管家采纳,获得10
5秒前
苏卿应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
5秒前
不配.应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
小毕可乐完成签到,获得积分10
6秒前
科目三应助满意铁身采纳,获得10
6秒前
7秒前
7秒前
木子完成签到 ,获得积分10
8秒前
无花果应助liyuxuan采纳,获得10
8秒前
火山蜗牛完成签到,获得积分10
9秒前
共享精神应助追寻电脑采纳,获得10
9秒前
情怀应助lwj6855采纳,获得10
9秒前
yuki完成签到 ,获得积分10
11秒前
12秒前
wzhang发布了新的文献求助10
12秒前
风再起时应助未晚采纳,获得20
13秒前
13秒前
星星发布了新的文献求助10
13秒前
13秒前
结实的寄柔应助欢呼学姐采纳,获得10
14秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162727
求助须知:如何正确求助?哪些是违规求助? 2813601
关于积分的说明 7901404
捐赠科研通 2473189
什么是DOI,文献DOI怎么找? 1316684
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175