亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning low‐dose CT degradation from unpaired data with flow‐based model

人工智能 深度学习 降噪 监督学习 模式识别(心理学) 计算机科学 噪音(视频) 人工神经网络 医学影像学 图像(数学) 机器学习 计算机视觉
作者
Xuan Liu,Xiaokun Liang,Lei Deng,Shan Tan,Yaoqin Xie
出处
期刊:Medical Physics [Wiley]
卷期号:49 (12): 7516-7530 被引量:9
标识
DOI:10.1002/mp.15886
摘要

Abstract Background There has been growing interest in low‐dose computed tomography (LDCT) for reducing the X‐ray radiation to patients. However, LDCT always suffers from complex noise in reconstructed images. Although deep learning‐based methods have shown their strong performance in LDCT denoising, most of them require a large number of paired training data of normal‐dose CT (NDCT) images and LDCT images, which are hard to acquire in the clinic. Lack of paired training data significantly undermines the practicability of supervised deep learning‐based methods. To alleviate this problem, unsupervised or weakly supervised deep learning‐based methods are required. Purpose We aimed to propose a method that achieves LDCT denoising without training pairs. Specifically, we first trained a neural network in a weakly supervised manner to simulate LDCT images from NDCT images. Then, simulated training pairs could be used for supervised deep denoising networks. Methods We proposed a weakly supervised method to learn the degradation of LDCT from unpaired LDCT and NDCT images. Concretely, LDCT and normal‐dose images were fed into one shared flow‐based model and projected to the latent space. Then, the degradation between low‐dose and normal‐dose images was modeled in the latent space. Finally, the model was trained by minimizing the negative log‐likelihood loss with no requirement of paired training data. After training, an NDCT image can be input to the trained flow‐based model to generate the corresponding LDCT image. The simulated image pairs of NDCT and LDCT can be further used to train supervised denoising neural networks for test. Results Our method achieved much better performance on LDCT image simulation compared with the most widely used image‐to‐image translation method, CycleGAN, according to the radial noise power spectrum. The simulated image pairs could be used for any supervised LDCT denoising neural networks. We validated the effectiveness of our generated image pairs on a classic convolutional neural network, REDCNN, and a novel transformer‐based model, TransCT. Our method achieved mean peak signal‐to‐noise ratio (PSNR) of 24.43dB, mean structural similarity (SSIM) of 0.785 on an abdomen CT dataset, mean PSNR of 33.88dB, mean SSIM of 0.797 on a chest CT dataset, which outperformed several traditional CT denoising methods, the same network trained by CycleGAN‐generated data, and a novel transfer learning method. Besides, our method was on par with the supervised networks in terms of visual effects. Conclusion We proposed a flow‐based method to learn LDCT degradation from only unpaired training data. It achieved impressive performance on LDCT synthesis. Next, we could train neural networks with the generated paired data for LDCT denoising. The denoising results are better than traditional and weakly supervised methods, comparable to supervised deep learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱科研完成签到,获得积分10
4秒前
jinghong完成签到 ,获得积分10
17秒前
orixero应助故意的茗采纳,获得10
24秒前
学谦完成签到 ,获得积分10
26秒前
27秒前
feifei发布了新的文献求助10
29秒前
令宏发布了新的文献求助50
30秒前
我是老大应助彩色德天采纳,获得30
31秒前
我的文献呢应助郑雅茵采纳,获得30
40秒前
44秒前
打打应助科研通管家采纳,获得10
44秒前
芳华正茂完成签到 ,获得积分10
47秒前
ldgsd完成签到 ,获得积分10
47秒前
HuanChen完成签到 ,获得积分10
49秒前
郑雅茵给郑雅茵的求助进行了留言
59秒前
1分钟前
彩色德天完成签到,获得积分10
1分钟前
领导范儿应助陈陈陈采纳,获得10
1分钟前
1分钟前
1分钟前
fengliurencai完成签到,获得积分10
1分钟前
彩色德天发布了新的文献求助30
1分钟前
陈陈陈发布了新的文献求助10
1分钟前
韩楠完成签到 ,获得积分10
1分钟前
我的文献呢应助陈陈陈采纳,获得40
1分钟前
罗舒发布了新的文献求助10
1分钟前
陈陈陈完成签到,获得积分10
1分钟前
1分钟前
qinli完成签到,获得积分10
1分钟前
SciGPT应助li采纳,获得10
1分钟前
2分钟前
2分钟前
故意的茗发布了新的文献求助10
2分钟前
2分钟前
li发布了新的文献求助10
2分钟前
田様应助故意的茗采纳,获得10
2分钟前
StonesKing完成签到,获得积分10
2分钟前
yzt完成签到 ,获得积分10
2分钟前
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965642
求助须知:如何正确求助?哪些是违规求助? 3510896
关于积分的说明 11155529
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214