CMA-ES with exponential based multiplicative covariance matrix adaptation for global optimization

CMA-ES公司 升程阶跃函数 数学优化 计算机科学 进化策略 协方差矩阵 进化算法 水准点(测量) 应用数学 算法 数学 大地测量学 统计 地理
作者
Bishal Karmakar,Abhishek Kumar,Rammohan Mallipeddi,Dong-Gyu Lee
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:79: 101296-101296 被引量:16
标识
DOI:10.1016/j.swevo.2023.101296
摘要

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is one of the proven evolutionary algorithms to solve complex optimization problems. However, CMA-ES is plagued with the computational overload that is associated with the unstable matrix decomposition process. In the current work, the computationally expensive covariance matrix decomposition is replaced with a multiplicative update of the mutation matrix which is a result of first-order exponential approximation. In addition, we incorporate the Heaviside function into the mutation matrix update to appropriately control the mutation step size. The proposed mutation matrix update scheme and the incorporation of the Heaviside function result in a modified evolution path. The performance of the proposed framework, referred to as Exponential Simplified CMA-ES (xSCMA-ES) is favorably compared with the state-of-the-art CMA-ES-based algorithms on — (a) IEEE CEC 2014 benchmark suite (b) with different DE variants on CoCo Framework and (c) hybrid active power filter design problem where the objective is to minimize the harmonic distortions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助wxj采纳,获得10
1秒前
鲈鱼完成签到,获得积分20
1秒前
NexusExplorer应助米酒采纳,获得10
3秒前
3秒前
zxx发布了新的文献求助10
3秒前
可靠的绝音完成签到 ,获得积分10
4秒前
Owen应助white采纳,获得10
6秒前
李佳发布了新的文献求助10
7秒前
鲈鱼发布了新的文献求助30
8秒前
8o7XJ7完成签到,获得积分10
8秒前
调皮语雪发布了新的文献求助10
10秒前
shinn发布了新的文献求助10
11秒前
领导范儿应助小鱼儿采纳,获得10
11秒前
rQiong完成签到,获得积分10
12秒前
CipherSage应助lucky采纳,获得10
12秒前
桐桐应助shi1207863831采纳,获得10
12秒前
14秒前
lyh完成签到 ,获得积分10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
孙冠军发布了新的文献求助10
16秒前
Xuan发布了新的文献求助10
17秒前
18秒前
点点点点完成签到,获得积分10
19秒前
19秒前
充电宝应助小懒采纳,获得10
19秒前
MikuMiya发布了新的文献求助30
19秒前
一路高飛完成签到,获得积分10
20秒前
20秒前
wxj发布了新的文献求助10
20秒前
迷路大白完成签到,获得积分10
20秒前
李佳完成签到,获得积分10
22秒前
严小之完成签到,获得积分10
22秒前
24秒前
25秒前
25秒前
SUHO完成签到,获得积分20
25秒前
李健的小迷弟应助77采纳,获得30
25秒前
white发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594225
求助须知:如何正确求助?哪些是违规求助? 4679892
关于积分的说明 14811940
捐赠科研通 4646251
什么是DOI,文献DOI怎么找? 2534795
邀请新用户注册赠送积分活动 1502789
关于科研通互助平台的介绍 1469475