CMA-ES with exponential based multiplicative covariance matrix adaptation for global optimization

CMA-ES公司 升程阶跃函数 数学优化 计算机科学 进化策略 协方差矩阵 进化算法 应用数学 算法 数学 统计
作者
Bishal Karmakar,Abhishek Kumar,Rammohan Mallipeddi,Dong Gyu Lee
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:79: 101296-101296 被引量:3
标识
DOI:10.1016/j.swevo.2023.101296
摘要

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is one of the proven evolutionary algorithms to solve complex optimization problems. However, CMA-ES is plagued with the computational overload that is associated with the unstable matrix decomposition process. In the current work, the computationally expensive covariance matrix decomposition is replaced with a multiplicative update of the mutation matrix which is a result of first-order exponential approximation. In addition, we incorporate the Heaviside function into the mutation matrix update to appropriately control the mutation step size. The proposed mutation matrix update scheme and the incorporation of the Heaviside function result in a modified evolution path. The performance of the proposed framework, referred to as Exponential Simplified CMA-ES (xSCMA-ES) is favorably compared with the state-of-the-art CMA-ES-based algorithms on — (a) IEEE CEC 2014 benchmark suite (b) with different DE variants on CoCo Framework and (c) hybrid active power filter design problem where the objective is to minimize the harmonic distortions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无辜小蘑菇完成签到,获得积分10
刚刚
刚刚
能干沛萍完成签到,获得积分20
1秒前
1秒前
yangling0124完成签到,获得积分10
1秒前
斯文败类应助clyhg采纳,获得10
1秒前
不安青牛应助spk采纳,获得10
1秒前
twk关闭了twk文献求助
1秒前
余生发布了新的文献求助10
2秒前
zhanhua li完成签到,获得积分0
3秒前
勇度完成签到,获得积分10
5秒前
FashionBoy应助ayu采纳,获得10
6秒前
6秒前
luna完成签到,获得积分0
6秒前
6秒前
852应助Fancy采纳,获得10
7秒前
元水云发布了新的文献求助30
8秒前
loongkk完成签到,获得积分10
9秒前
NexusExplorer应助凌惠娟采纳,获得30
9秒前
9秒前
9秒前
666发布了新的文献求助10
9秒前
9秒前
顾矜应助乐乐乐乐乐乐采纳,获得10
9秒前
传奇3应助乐乐乐乐乐乐采纳,获得10
9秒前
9秒前
9秒前
苏书白应助ilaragakki采纳,获得10
10秒前
10秒前
余生完成签到,获得积分10
10秒前
10秒前
11秒前
ding应助咕咕咕冒泡采纳,获得10
11秒前
12秒前
12秒前
13秒前
13秒前
suxin完成签到 ,获得积分10
13秒前
14秒前
zj发布了新的文献求助10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150027
求助须知:如何正确求助?哪些是违规求助? 2801108
关于积分的说明 7843272
捐赠科研通 2458621
什么是DOI,文献DOI怎么找? 1308555
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721