Learning position information from attention: End-to-end weakly supervised crack segmentation with GANs

分割 人工智能 计算机科学 任务(项目管理) 职位(财务) 注释 翻译(生物学) 模式识别(心理学) 图像分割 计算机视觉 像素 机器学习 工程类 财务 生物化学 化学 系统工程 信使核糖核酸 经济 基因
作者
Ye Liu,Jun Chen,Jia-ao Hou
出处
期刊:Computers in Industry [Elsevier BV]
卷期号:149: 103921-103921 被引量:7
标识
DOI:10.1016/j.compind.2023.103921
摘要

Despite the impressive progress of fully supervised crack segmentation, the tedious pixel-level annotation restricts its general application. Weakly supervised crack segmentation with image-level labels has received increasing attention due to the easily accessible annotation. However, the current methods are mainly based on class activation mapping (CAM) and fail to obtain the accurate crack position information directly, resulting in the complex training steps and poor segmentation performance. For the efficient tasks of weakly supervised crack segmentation, this paper proposes a novel end-to-end weakly supervised crack segmentation method termed RepairerGAN, which can directly obtain the crack segmentation result with the category information only. The proposed RepairerGAN decouples the image-to-image translation model of two different image domains into a semantic translation module and a position extraction module and uses the attention mechanism to extract the crack position information as the segmentation result. In the simple weakly supervised segmentation task based on METU crack dataset, the performance of RepairerGAN only needs a training time equal to 13.3% of that of the best performing ScoreCAM. In the complex task based on Combined crack dataset, the performance of RepairerGAN (F1 of 72.63% and IoU of 61.37%) with shorter training time is significantly ahead of the best performing ScoreCAM (F1 of 44.43% and IoU of 33.32%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芒果好高发布了新的文献求助10
刚刚
2秒前
2秒前
3秒前
3秒前
4秒前
5秒前
小盘子完成签到,获得积分10
6秒前
李繁蕊完成签到,获得积分10
6秒前
6秒前
酷波er应助mashichuang采纳,获得10
6秒前
color发布了新的文献求助10
7秒前
7秒前
Helio发布了新的文献求助10
7秒前
7秒前
顺心若魔发布了新的文献求助10
8秒前
9秒前
CLN完成签到,获得积分10
10秒前
小王姐姐完成签到,获得积分10
10秒前
harri发布了新的文献求助30
10秒前
森敷完成签到 ,获得积分10
11秒前
缥缈的寻琴应助Atlantic采纳,获得10
12秒前
12秒前
12秒前
Gary完成签到,获得积分10
13秒前
15秒前
初芷伊完成签到,获得积分10
16秒前
16秒前
17秒前
火星上青筠完成签到,获得积分10
17秒前
18秒前
勤奋的下水道工人完成签到,获得积分10
18秒前
samtol完成签到,获得积分10
18秒前
19秒前
机智念芹发布了新的文献求助10
19秒前
19秒前
20秒前
wanci应助慕容迎松采纳,获得10
21秒前
21秒前
ccx完成签到,获得积分10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998074
求助须知:如何正确求助?哪些是违规求助? 3537636
关于积分的说明 11272063
捐赠科研通 3276726
什么是DOI,文献DOI怎么找? 1807114
邀请新用户注册赠送积分活动 883710
科研通“疑难数据库(出版商)”最低求助积分说明 810007