Efficient Electrochemical Oxidation of Chloramphenicol by Novel Reduced TiO2 Nanotube Array Anodes: Kinetics, Reaction Parameters, Degradation Pathway and Biotoxicity Forecast

电化学 阳极 降级(电信) 材料科学 电子顺磁共振 催化作用 二氧化钛 电解质 电极 无机化学 硫酸钠 化学工程 化学 有机化学 复合材料 冶金 物理化学 电信 物理 核磁共振 计算机科学 工程类
作者
Pengqi Wang,Guangyi Chu,Guangfei Gao,Fengchun Li,Yi Ren,Yue Ding,Yawei Gu,Wenqiang Jiang,Xuan Zhang
出处
期刊:Materials [MDPI AG]
卷期号:16 (11): 3971-3971 被引量:2
标识
DOI:10.3390/ma16113971
摘要

The key component of electrochemical advanced oxidation technology are high-efficiency anodes, and highly efficient and simple-to-prepare materials have generated a lot of interest. In this study, novel self-supported Ti3+-doped titanium dioxide nanotube arrays (R-TNTs) anodes were successfully prepared by a two-step anodic oxidation and straightforward electrochemical reduction technique. The electrochemical reduction self-doping treatment produced more Ti3+ sites with stronger absorption in the UV-vis region, a band gap reduction from 2.86 to 2.48 ev, and a significant increase in electron transport rate. The electrochemical degradation effect of R-TNTs electrode on chloramphenicol (CAP) simulated wastewater was investigated. At pH = 5, current density of 8 mA cm-2, electrolyte concentration of 0.1 M sodium sulfate (Na2SO4), initial CAP concentration of 10 mg L-1, CAP degradation efficiency exceeded 95% after 40 min. In addition, molecular probe experiments and electron paramagnetic resonance (EPR) tests revealed that the active species were mainly •OH and SO4-, among which •OH played a major role. The CAP degradation intermediates were discovered using high-performance liquid chromatography-mass spectrometry (HPLC-MS), and three possible degradation mechanisms were postulated. In cycling experiments, the R-TNTs anode demonstrated good stability. The R-TNTs prepared in this paper were an anode electrocatalytic material with high catalytic activity and stability, which could provide a new approach for the preparation of electrochemical anode materials for difficult-to-degrade organic compounds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦惊蛰完成签到 ,获得积分10
刚刚
MeiLing发布了新的文献求助10
1秒前
热情钥匙完成签到 ,获得积分10
1秒前
2秒前
可可西里完成签到 ,获得积分10
4秒前
笨笨雪碧完成签到,获得积分10
5秒前
派先生完成签到,获得积分10
5秒前
cxx完成签到 ,获得积分10
6秒前
9秒前
欢欢子完成签到,获得积分10
11秒前
12秒前
毛豆爸爸发布了新的文献求助10
13秒前
13秒前
曼粒子完成签到,获得积分10
14秒前
科研通AI2S应助Maqian采纳,获得10
14秒前
顾矜应助Yingkun_Xu采纳,获得10
15秒前
15秒前
北秋发布了新的文献求助10
17秒前
18秒前
嘎发完成签到,获得积分10
19秒前
大琦发布了新的文献求助10
20秒前
超级万声完成签到,获得积分10
22秒前
klb13应助斯文谷秋采纳,获得10
22秒前
23秒前
GRATE完成签到 ,获得积分10
23秒前
斯文败类应助feifei采纳,获得10
26秒前
28秒前
大琦完成签到,获得积分20
29秒前
zho应助飞翔的企鹅采纳,获得10
30秒前
31秒前
吕曼完成签到,获得积分10
31秒前
夸父完成签到,获得积分10
32秒前
淡然元彤应助北秋采纳,获得10
32秒前
33秒前
zhy发布了新的文献求助10
34秒前
34秒前
科研通AI2S应助阿文采纳,获得10
35秒前
Orange应助zhu采纳,获得10
35秒前
温柔皮皮虾完成签到,获得积分10
36秒前
youngneuron发布了新的文献求助10
36秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236135
求助须知:如何正确求助?哪些是违规求助? 2881861
关于积分的说明 8224025
捐赠科研通 2549869
什么是DOI,文献DOI怎么找? 1378680
科研通“疑难数据库(出版商)”最低求助积分说明 648430
邀请新用户注册赠送积分活动 623871