Overcoming the Barrier of Incompleteness: A Hyperspectral Image Classification Full Model

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 机器学习 上下文图像分类 高光谱成像 图形 数据挖掘 图像(数学) 理论计算机科学
作者
Jiaqi Yang,Bo Du,Liangpei Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:2
标识
DOI:10.1109/tnnls.2023.3279377
摘要

Deep learning-based methods have shown promising outcomes in many fields. However, the performance gain is always limited to a large extent in classifying hyperspectral image (HSI). We discover that the reason behind this phenomenon lies in the incomplete classification of HSI, i.e., existing works only focus on a certain stage that contributes to the classification, while ignoring other equally or even more significant phases. To address the above issue, we creatively put forward three elements needed for complete classification: the extensive exploration of available features, adequate reuse of representative features, and differential fusion of multidomain features. To the best of our knowledge, these three elements are being established for the first time, providing a fresh perspective on designing HSI-tailored models. On this basis, an HSI classification full model (HSIC-FM) is proposed to overcome the barrier of incompleteness. Specifically, a recurrent transformer corresponding to Element 1 is presented to comprehensively extract short-term details and long-term semantics for local-to-global geographical representation. Afterward, a feature reuse strategy matching Element 2 is designed to sufficiently recycle valuable information aimed at refined classification using few annotations. Eventually, a discriminant optimization is formulized in accordance with Element 3 to distinctly integrate multidomain features for the purpose of constraining the contribution of different domains. Numerous experiments on four datasets at small-, medium-, and large-scale demonstrate that the proposed method outperforms the state-of-the-art (SOTA) methods, such as convolutional neural network (CNN)-, fully convolutional network (FCN)-, recurrent neural network (RNN)-, graph convolutional network (GCN)-, and transformer-based models (e.g., accuracy improvement of more than 9% with only five training samples per class). The code will be available soon at https://github.com/jqyang22/ HSIC-FM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
asipilin发布了新的文献求助10
刚刚
星空完成签到,获得积分10
1秒前
amanda发布了新的文献求助10
1秒前
甜蜜傲晴完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
金轩完成签到 ,获得积分10
2秒前
renlangfen发布了新的文献求助10
2秒前
3秒前
封尘逸动完成签到,获得积分10
3秒前
狂野萤发布了新的文献求助30
3秒前
Cys关注了科研通微信公众号
4秒前
布鲁完成签到,获得积分20
5秒前
zzz发布了新的文献求助10
5秒前
5秒前
5秒前
奋斗的绝悟完成签到 ,获得积分10
6秒前
KSung发布了新的文献求助10
6秒前
852应助相龙采纳,获得10
6秒前
科研通AI2S应助cyd采纳,获得10
6秒前
7秒前
1002SHIB完成签到,获得积分10
7秒前
一个小短发完成签到,获得积分10
7秒前
曹梦梦完成签到,获得积分10
8秒前
萧水白发布了新的文献求助100
8秒前
9秒前
NexusExplorer应助xiang采纳,获得10
9秒前
隐形千愁发布了新的文献求助10
9秒前
东东完成签到,获得积分10
10秒前
guoweisleep发布了新的文献求助10
10秒前
10秒前
香蕉觅云应助王京华采纳,获得30
10秒前
zhai发布了新的文献求助20
11秒前
Ly完成签到,获得积分10
11秒前
1002SHIB发布了新的文献求助10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147394
求助须知:如何正确求助?哪些是违规求助? 2798622
关于积分的说明 7830067
捐赠科研通 2455346
什么是DOI,文献DOI怎么找? 1306770
科研通“疑难数据库(出版商)”最低求助积分说明 627899
版权声明 601587