Interpretable Machine Learning for Choosing Radiation Dose-volume Constraints on Cardio-pulmonary Substructures Associated with Overall Survival in NRG Oncology RTOG 0617

医学 肺癌 比例危险模型 放射治疗 心室 核医学 心脏病学 内科学 人工智能 计算机科学
作者
Sang Ho Lee,H. Geng,Jacinta Arnold,Richard A. Caruana,Yong Fan,Mark Rosen,Aditya Apte,Joseph O. Deasy,Jeffrey D. Bradley,Ying Xiao
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:117 (5): 1270-1286 被引量:8
标识
DOI:10.1016/j.ijrobp.2023.06.009
摘要

Purpose Our objective was to use interpretable machine learning for choosing dose-volume constraints on cardiopulmonary substructures (CPSs) associated with overall survival (OS) in radiation therapy for locally advanced non-small cell lung cancer. Methods and Materials A total of 428 patients with non-small cell lung cancer were randomly divided into training/validation/test subsets (n = 230/149/49) in Radiation Therapy Oncology Group 0617. Manual or automated contouring was performed to segment CPSs, including heart, atria, ventricles, aorta, left/right ventricle/atrium (LV+RV+LA+RA), inferior/superior vena cava, pulmonary artery, and pericardium. Peri (pericardium-heart), rest (heart-[LV+RV+LA+RA]), clinical target volume (CTV), and lungs-CTV contours were also obtained. Dose-volume histogram features were extracted, including minimum/mean dose to the hottest x% volume (Dx%[Gy]/MOHx%[Gy]), minimum/mean/maximum dose, percent volume receiving at least xGy (VxGy[%]), and overlapping volume of each CPS with planning target volume (PTV_Voverlap[%]). Clinical parameters were collected from the National Clinical Trials Network/Community oncology research program data archive. Feature selection was performed using a series of multiblock sparse partial least squares regression, stability selection supervised principal component analysis, and Boruta. Explainable boosting machine (EBM) was trained using a conditional survival distribution-based approach for imputing censored data, treating survival analysis as a regression problem. Harrell's C-index was used to evaluate OS discrimination performance of EBM, Cox proportional hazards (CPH), random survival forest, extreme gradient boosting survival embeddings, and CPH deep neural network (DeepSurv) models in the test set. Dose-volume constraints were selected using the binary change point detection algorithm in Shapley additive explanations–based partial dependence functions. Results Selected features included LA_V60Gy(%), pericardium_D30%(Gy), lungs-CTV_PTV_Voverlap(%), RA_V55Gy(%), and received_cons_chemo. All models ranked LA_V60Gy(%) as the most important feature. EBM achieved the best performance for predicting OS, followed by extreme gradient boosting survival embeddings, random survival forest, DeepSurv, and CPH (C-index = 0.653, 0.646, 0.642, 0.638, and 0.632). EBM global explanations suggested that LA_V60Gy(%) < 25.6, lungs-CTV_PTV_Voverlap(%) < 1.1, pericardium_D30%(Gy) < 18.9, RA_V55Gy(%) < 19.5, and received_cons_chemo = ‘Yes’ for improved OS. Conclusions EBM can be used to discriminate OS while also guiding dose-volume constraint selection for optimal management of cardiac toxicity in lung cancer radiation therapy. Our objective was to use interpretable machine learning for choosing dose-volume constraints on cardiopulmonary substructures (CPSs) associated with overall survival (OS) in radiation therapy for locally advanced non-small cell lung cancer. A total of 428 patients with non-small cell lung cancer were randomly divided into training/validation/test subsets (n = 230/149/49) in Radiation Therapy Oncology Group 0617. Manual or automated contouring was performed to segment CPSs, including heart, atria, ventricles, aorta, left/right ventricle/atrium (LV+RV+LA+RA), inferior/superior vena cava, pulmonary artery, and pericardium. Peri (pericardium-heart), rest (heart-[LV+RV+LA+RA]), clinical target volume (CTV), and lungs-CTV contours were also obtained. Dose-volume histogram features were extracted, including minimum/mean dose to the hottest x% volume (Dx%[Gy]/MOHx%[Gy]), minimum/mean/maximum dose, percent volume receiving at least xGy (VxGy[%]), and overlapping volume of each CPS with planning target volume (PTV_Voverlap[%]). Clinical parameters were collected from the National Clinical Trials Network/Community oncology research program data archive. Feature selection was performed using a series of multiblock sparse partial least squares regression, stability selection supervised principal component analysis, and Boruta. Explainable boosting machine (EBM) was trained using a conditional survival distribution-based approach for imputing censored data, treating survival analysis as a regression problem. Harrell's C-index was used to evaluate OS discrimination performance of EBM, Cox proportional hazards (CPH), random survival forest, extreme gradient boosting survival embeddings, and CPH deep neural network (DeepSurv) models in the test set. Dose-volume constraints were selected using the binary change point detection algorithm in Shapley additive explanations–based partial dependence functions. Selected features included LA_V60Gy(%), pericardium_D30%(Gy), lungs-CTV_PTV_Voverlap(%), RA_V55Gy(%), and received_cons_chemo. All models ranked LA_V60Gy(%) as the most important feature. EBM achieved the best performance for predicting OS, followed by extreme gradient boosting survival embeddings, random survival forest, DeepSurv, and CPH (C-index = 0.653, 0.646, 0.642, 0.638, and 0.632). EBM global explanations suggested that LA_V60Gy(%) < 25.6, lungs-CTV_PTV_Voverlap(%) < 1.1, pericardium_D30%(Gy) < 18.9, RA_V55Gy(%) < 19.5, and received_cons_chemo = ‘Yes’ for improved OS. EBM can be used to discriminate OS while also guiding dose-volume constraint selection for optimal management of cardiac toxicity in lung cancer radiation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛卡巴卡完成签到 ,获得积分10
刚刚
LLSSLL发布了新的文献求助10
1秒前
浮浮世世发布了新的文献求助10
1秒前
wanci应助贪念空山采纳,获得10
1秒前
Trever完成签到,获得积分10
1秒前
zzz完成签到,获得积分10
1秒前
绒绒完成签到,获得积分10
1秒前
肉肉发布了新的文献求助10
2秒前
3秒前
重要的芷文完成签到,获得积分10
3秒前
曼珠沙华发布了新的文献求助10
3秒前
NexusExplorer应助Evander采纳,获得10
4秒前
北城关注了科研通微信公众号
4秒前
华仔应助旋转门采纳,获得10
4秒前
5秒前
5秒前
7秒前
赘婿应助狂野的夏青采纳,获得10
7秒前
7秒前
LYH完成签到,获得积分10
8秒前
8秒前
9秒前
阿德利企鹅完成签到,获得积分10
10秒前
10秒前
微眠发布了新的文献求助10
11秒前
11秒前
cjlinhunu发布了新的文献求助10
12秒前
xpdnpu完成签到,获得积分10
12秒前
酷波er应助大婷子采纳,获得10
12秒前
14秒前
xcxcxcily完成签到,获得积分10
14秒前
SciGPT应助zxy采纳,获得10
14秒前
16秒前
Orange应助秀丽冷安采纳,获得10
16秒前
含糊的冰安完成签到,获得积分10
16秒前
LLSSLL完成签到,获得积分10
16秒前
领导范儿应助宋宋宋2采纳,获得10
16秒前
情怀应助丹丹采纳,获得10
16秒前
zn关注了科研通微信公众号
16秒前
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5113789
求助须知:如何正确求助?哪些是违规求助? 4321190
关于积分的说明 13464750
捐赠科研通 4152651
什么是DOI,文献DOI怎么找? 2275364
邀请新用户注册赠送积分活动 1277244
关于科研通互助平台的介绍 1215430