雅罗维亚
代谢工程
电合成
化学
生物化学
生产(经济)
酵母
生物技术
生化工程
食品科学
生物
工程类
酶
经济
物理化学
宏观经济学
电极
电化学
作者
Congcong Huang,Yaru Chen,Shuai Cheng,Mengxu Li,Luxin Wang,Meijie Cheng,Feng Li,Yingxiu Cao,Hao Song
摘要
Abstract The limited supply of reducing power restricts the efficient utilization of acetate in Yarrowia lipolytica . Here, microbial electrosynthesis (MES) system, enabling direct conversion of inward electrons to NAD(P)H, was used to improve the production of fatty alcohols from acetate based on pathway engineering. First, the conversion efficiency of acetate to acetyl‐CoA was reinforced by heterogenous expression of ackA‐pta genes. Second, a small amount of glucose was used as cosubstrate to activate the pentose phosphate pathway and promote intracellular reducing cofactors synthesis. Third, through the employment of MES system, the final fatty alcohols production of the engineered strain YLFL‐11 reached 83.8 mg/g dry cell weight (DCW), which was 6.17‐fold higher than the initial production of YLFL‐2 in shake flask. Furthermore, these strategies were also applied for the elevation of lupeol and betulinic acid synthesis from acetate in Y. lipolytica , demonstrating that our work provides a practical solution for cofactor supply and the assimilation of inferior carbon sources.
科研通智能强力驱动
Strongly Powered by AbleSci AI