化学
水解
催化作用
牛血清白蛋白
纳米颗粒
肽键
亲核细胞
水溶液中的金属离子
试剂
组合化学
肽
键裂
金属
还原剂
无机化学
有机化学
化学工程
色谱法
酶
工程类
生物化学
作者
Jiahao Xu,Ningning Ji,Mingxiu Guo,Yaru Wang,Xiaolong Xu
标识
DOI:10.1002/anie.202304554
摘要
Many nanoproteases contain tetravalent metal ions and catalyze peptide-bond hydrolysis only at high temperature (60 °C). Here, we report a new and effective strategy to explore nanoproteases from nanoparticles containing low valent metal ions. We found that flower-like CuCoO2 nanoparticles (CuCoO2 NPs) containing low valent Cu+ possessed excellent catalytic activity towards selective cleavage of peptide bonds with hydrophobic residues in bovine serum albumin (BSA) at room temperature. CuCoO2 NPs exhibited excellent stability and had great reusability. CuCoO2 NPs also hydrolyzed heat-denatured and surfactant-denatured BSA. Mechanism analysis revealed that the high Lewis acidity of Co3+ and the low valence of Cu+ were both essential for the high protease activity of CuCoO2 NPs. The flower-like structure of CuCoO2 NPs and the strong nucleophilicity of Cu+ -bound hydroxyl endow them with excellent catalytic performance. The findings open a new way for the design and discovery of high-efficiency nanoproteases.
科研通智能强力驱动
Strongly Powered by AbleSci AI