生长素
生物
转基因
侧根
突变体
植物
脯氨酸
基因
拟南芥
细胞生物学
遗传学
氨基酸
作者
Lingna Chen,Peitong Dou,Yongkun Chen,Hanqi Yang
标识
DOI:10.1016/j.plaphy.2023.107827
摘要
Woody bamboos are important resource of industrial fibres. Auxin signaling plays a key role in multiple plant developmental processes, as yet the role of auxin/indole acetic acid (Aux/IAA) in culm development of woody bamboos has not been previously characterized. Dendrocalamus sinicus Chia et J. L. Sun is the largest woody bamboo documented in the world. Here, we identified two alleles of DsIAA21 gene (sIAA21 and bIAA21) from the straight- and bent-culm variants of D. sinicus, respectively, and studied how the domains I, i, and II of DsIAA21 affect the gene transcriptional repression. The results showed that bIAA21 expression was rapidly induced by exogenous auxin in D. sinicus. In transgenic tobacco, sIAA21 and bIAA21 mutated in domains i, and II significantly regulated plant architecture and root development. Stem cross sections revealed that parenchyma cells were smaller in transgenic plants than that in wild type plants. Domain i mutation changed the leucine and proline at position 45 to proline and leucine (siaa21L45P and biaa21P45L) strongly repressed cell expansion and root elongation by reducing the gravitropic response. Substitution of isoleucine with valine in domain II of the full length DsIAA21 resulted in dwarf stature in transgenic tobacco plants. Furthermore, the DsIAA21 interacted with auxin response factor 5 (ARF5) in transgenic tobacco plants, suggesting that DsIAA21 might inhibit stem and root elongation via interacting with ARF5. Taken together, our data indicated that DsIAA21 was a negative regulator of plant development and suggested that amino acid differences in domain i of sIAA21 versus bIAA21 affected their response to auxin, and might play a key role in the formation of the bent culm variant in D. sinicus. Our results not only shed a light on the morphogenetic mechanism in D. sinicus, but also provided new insights into versatile function of Aux/IAAs in plants.
科研通智能强力驱动
Strongly Powered by AbleSci AI