EFL learners’ perceptions and their association with the effectiveness of model texts as a feedback tool

论辩的 任务(项目管理) 感知 重写 计算机科学 第二语言写作 纠正性反馈 控制(管理) 联想(心理学) 数学教育 心理学 第二语言 语言学 人工智能 程序设计语言 哲学 管理 神经科学 经济 心理治疗师
作者
Eun Young Kang
出处
期刊:Innovation in Language Learning and Teaching [Taylor & Francis]
卷期号:18 (1): 47-58 被引量:2
标识
DOI:10.1080/17501229.2023.2226144
摘要

ABSTRACTABSTRACTThis quasi-experimental study investigated the effect of using model texts as a written corrective feedback (WCF) strategy on second language learners' writing, in both rewritten drafts and new drafts. It further examined learners' perceptions of model-based feedback and how those perceptions affected model effectiveness. Sixty-six English learners were equally divided into either a model group (i.e. an experiment group) or a control group. They wrote an argumentative essay, rewrote the same text, and then wrote a new text using a different prompt. Before rewriting their first draft, the model group received model texts with which they compared their initial writing, whereas the control group self-corrected their errors instead. The model group also completed a perception questionnaire on the usefulness of model-based feedback. The model group outperformed the control group, but only in the rewriting task. Furthermore, in the rewriting task there was a significant correlation between learners' perceptions of models and the effectiveness of model-based feedback, but not in the new writing task.KEYWORDS: Model-based feedbackwritten corrective feedbackL2 writingSecond Language LearningAdult Language LearnersWriting Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationNotes on contributorsEun Young KangEun Young Kang received her doctorate in applied linguistics from Teachers College, Columbia University. She is an assistant professor at Kongju National University. Her articles have appeared in Modern Language Journal, Language Teaching Research, System, and Studies in Second Language Acquisition among others.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
含蓄的小熊猫完成签到 ,获得积分10
刚刚
1秒前
1秒前
动漫大师发布了新的文献求助10
2秒前
3秒前
Enso完成签到 ,获得积分10
4秒前
zf123完成签到,获得积分20
4秒前
laoli2022完成签到,获得积分10
6秒前
不安的兔子关注了科研通微信公众号
6秒前
镐hao完成签到,获得积分10
8秒前
8秒前
AYEFORBIDER发布了新的文献求助10
9秒前
zhangyx完成签到 ,获得积分0
11秒前
SciGPT应助王臻采纳,获得10
11秒前
齐天完成签到 ,获得积分10
12秒前
瓦解99完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
14秒前
平常的傲蕾完成签到,获得积分10
14秒前
15秒前
15秒前
Tizzy完成签到,获得积分10
16秒前
16秒前
18秒前
xyy102发布了新的文献求助10
18秒前
18秒前
欢欢完成签到 ,获得积分10
18秒前
19秒前
rui发布了新的文献求助10
19秒前
英姑应助qsy采纳,获得10
19秒前
老朱发布了新的文献求助10
20秒前
kejun完成签到 ,获得积分10
21秒前
LLLLL完成签到,获得积分10
21秒前
月光完成签到 ,获得积分10
22秒前
单纯半双完成签到,获得积分10
23秒前
LLLLL发布了新的文献求助10
23秒前
júpiter完成签到,获得积分10
24秒前
yamo完成签到 ,获得积分10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Gay and Lesbian Asia 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3759143
求助须知:如何正确求助?哪些是违规求助? 3302211
关于积分的说明 10121437
捐赠科研通 3016595
什么是DOI,文献DOI怎么找? 1656540
邀请新用户注册赠送积分活动 790536
科研通“疑难数据库(出版商)”最低求助积分说明 753886