已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiparametric MRI for Assessment of the Biological Invasiveness and Prognosis of Pancreatic Ductal Adenocarcinoma in the Era of Artificial Intelligence

计算机科学 人工智能 深度学习 无线电技术 磁共振成像 医学影像学 机器学习 医学 放射科
作者
Ben Y. Zhao,Buyue Cao,Tianyi Xia,Liwen Zhu,Yaoyao Yu,Chun‐Qiang Lu,Tianyu Tang,Yuancheng Wang,Ying Cui
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
标识
DOI:10.1002/jmri.29708
摘要

Pancreatic ductal adenocarcinoma (PDAC) is the deadliest malignant tumor, with a grim 5‐year overall survival rate of about 12%. As its incidence and mortality rates rise, it is likely to become the second‐leading cause of cancer‐related death. The radiological assessment determined the stage and management of PDAC. However, it is a highly heterogeneous disease with the complexity of the tumor microenvironment, and it is challenging to adequately reflect the biological aggressiveness and prognosis accurately through morphological evaluation alone. With the dramatic development of artificial intelligence (AI), multiparametric magnetic resonance imaging (mpMRI) using specific contrast media and special techniques can provide morphological and functional information with high image quality and become a powerful tool in quantifying intratumor characteristics. Besides, AI has been widespread in the field of medical imaging analysis. Radiomics is the high‐throughput mining of quantitative image features from medical imaging that enables data to be extracted and applied for better decision support. Deep learning is a subset of artificial neural network algorithms that can automatically learn feature representations from data. AI‐enabled imaging biomarkers of mpMRI have enormous promise to bridge the gap between medical imaging and personalized medicine and demonstrate huge advantages in predicting biological characteristics and the prognosis of PDAC. However, current AI‐based models of PDAC operate mainly in the realm of a single modality with a relatively small sample size, and the technical reproducibility and biological interpretation present a barrage of new potential challenges. In the future, the integration of multi‐omics data, such as radiomics and genomics, alongside the establishment of standardized analytical frameworks will provide opportunities to increase the robustness and interpretability of AI‐enabled image biomarkers and bring these biomarkers closer to clinical practice. Evidence Level 3 Technical Efficacy Stage 4

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
袁钰琳完成签到 ,获得积分10
刚刚
杨哈哈发布了新的文献求助10
刚刚
赵立韶华完成签到,获得积分10
1秒前
lht完成签到 ,获得积分10
1秒前
单薄乐珍完成签到 ,获得积分10
1秒前
海派Hi完成签到 ,获得积分10
2秒前
Carrots完成签到 ,获得积分10
2秒前
草莓啵啵兔完成签到 ,获得积分10
2秒前
inu1255完成签到,获得积分0
3秒前
Hosea完成签到 ,获得积分10
3秒前
抠鼻公主完成签到 ,获得积分10
3秒前
wei jie完成签到 ,获得积分10
4秒前
5秒前
嗯哼完成签到,获得积分0
6秒前
Benjamin完成签到 ,获得积分10
7秒前
duxh123完成签到 ,获得积分10
7秒前
youngyang完成签到 ,获得积分10
8秒前
奔跑的蒲公英完成签到,获得积分10
8秒前
乐观的凌兰完成签到 ,获得积分10
8秒前
8秒前
pangzh完成签到,获得积分10
9秒前
mmyhn完成签到,获得积分10
9秒前
fff完成签到,获得积分20
10秒前
LI发布了新的文献求助10
11秒前
星空完成签到 ,获得积分10
12秒前
gwh完成签到 ,获得积分10
13秒前
wuyongmei发布了新的文献求助10
14秒前
R喻andom完成签到,获得积分10
14秒前
C_Cppp完成签到 ,获得积分10
14秒前
xyyyy完成签到 ,获得积分10
14秒前
迷路炎彬完成签到,获得积分10
14秒前
黎_完成签到,获得积分10
15秒前
激动的人杰完成签到 ,获得积分10
15秒前
Tei完成签到,获得积分10
15秒前
summer完成签到,获得积分10
16秒前
小新没了蜡笔完成签到,获得积分10
17秒前
Ranrunn完成签到 ,获得积分10
17秒前
super完成签到,获得积分10
17秒前
eeeee完成签到 ,获得积分10
17秒前
WangWaud完成签到,获得积分10
18秒前
高分求助中
Comprehensive natural products III : chemistry and biology 3000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346664
求助须知:如何正确求助?哪些是违规求助? 2973290
关于积分的说明 8658831
捐赠科研通 2653738
什么是DOI,文献DOI怎么找? 1453317
科研通“疑难数据库(出版商)”最低求助积分说明 672815
邀请新用户注册赠送积分活动 662753

今日热心研友

嗯哼
2
小蘑菇
1
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10