Rapid Charge Transfer Endowed by Heteroatom Doped Z‐Scheme Van Der Waals Heterojunction for Boosting Photocatalytic Hydrogen Evolution

异质结 范德瓦尔斯力 光催化 材料科学 杂原子 兴奋剂 化学物理 氢键 电场 纳米技术 光电子学 化学 催化作用 分子 物理 有机化学 量子力学 戒指(化学)
作者
Weinan Xing,Weifan Shao,Yingfu Li,Huage Lin,Jiangang Han,Lu-Yi Zou,Ran Jia,Guangyu Wu
出处
期刊:Small [Wiley]
标识
DOI:10.1002/smll.202412036
摘要

Abstract Constructing heterojunctions between phase interfaces represents a crucial strategy for achieving excellent photocatalytic performance, but the absence of sufficient interface driving force and limited charge transfer pathway leads to unsatisfactory charge separation processes. Herein, a doping‐engineering strategy is introduced to construct a In─N bond‐bridged In 2 S 3 nanocluster modified S doped carbon nitride (CN) nanosheets Z‐Scheme van der Waals (VDW) heterojunctions (In 2 S 3 /CNS) photocatalyst, and the preparation process just by one‐step pyrolysis using the pre‐coordination confinement method. Specifically, S atoms doping enhances the bond strength of In─N and forms high‐quality interfacial In─N linkage which serves as the atomic‐level interfacial “highway” for improving the interfacial electrons migration, decreasing the charge recombination probability. The detailed characterization results, along with theoretical calculations, confirm that both S atom incorporation and the formation of Z‐Scheme VDW heterojunctions synergistically improve the internal electric field. This, in turn, accelerates charge separation and simultaneously enhances light absorption capacity. Consequently, the optimal hydrogen evolution performance of In₂S₃/CNS2 is 160.8 times greater than that of In₂S₃, 8.2 times higher than that of CNS. This study emphasizes the crucial role of atomic‐scale interface regulation and intrinsic electric fields in Z‐Scheme VDW heterojunctions, contributing to ameliorative photocatalytic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白发布了新的文献求助30
1秒前
uu发布了新的文献求助10
1秒前
赘婿应助最溜皮大爷采纳,获得10
2秒前
冰美式完成签到 ,获得积分10
3秒前
Akim应助Kra采纳,获得10
4秒前
ty完成签到,获得积分10
5秒前
6秒前
神说应助NiNi采纳,获得10
8秒前
11秒前
ikun0000完成签到,获得积分10
13秒前
13秒前
15秒前
15秒前
16秒前
Kra发布了新的文献求助10
17秒前
a涵发布了新的文献求助10
17秒前
18秒前
lily发布了新的文献求助10
18秒前
19秒前
京末发布了新的文献求助10
20秒前
20秒前
20秒前
20秒前
追风发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
布衣南耕完成签到 ,获得积分10
22秒前
23秒前
可爱的函函应助成太采纳,获得10
23秒前
23秒前
桐桐应助zihi采纳,获得10
25秒前
25秒前
GG发布了新的文献求助10
25秒前
彭于晏应助京末采纳,获得10
25秒前
bkagyin应助陈一采纳,获得10
25秒前
Kra完成签到,获得积分10
25秒前
chenhongyue发布了新的文献求助30
26秒前
QAQSS发布了新的文献求助10
26秒前
Luis完成签到,获得积分10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774942
求助须知:如何正确求助?哪些是违规求助? 3320717
关于积分的说明 10201500
捐赠科研通 3035571
什么是DOI,文献DOI怎么找? 1665545
邀请新用户注册赠送积分活动 796995
科研通“疑难数据库(出版商)”最低求助积分说明 757683