Bayesian Approach for Damping Identification of Stay Cables Under Vortex‐Induced Vibrations

振动 涡流 贝叶斯概率 鉴定(生物学) 声学 物理 机械 计算机科学 人工智能 生物 植物
作者
Jiren Zhang,Zhouquan Feng,Jinyuan Dai,Yafei Wang,Xugang Hua,Wang‐Ji Yan
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:2025 (1)
标识
DOI:10.1155/stc/5532528
摘要

As the span of cable‐stayed bridges increases, so does the length of stay cables, making cable vortex‐induced vibrations (VIVs) more prominent. This is particularly evident in higher‐order multimodal VIVs, which are closely linked to the damping characteristics of the cables. Traditional operational modal analysis (OMA) methods often fail under VIV conditions due to the inadequacy of the white noise excitation assumption. Moreover, potential influences from ambient vibrations and noise contamination introduce further uncertainties into the identification results. This paper addresses these challenges by proposing a novel Bayesian method for damping identification from measured VIV responses. The proposed method, based on a single‐degree‐of‐freedom (SDOF) vortex‐induced force model and the statistical properties of the power spectral density of the VIV measurements, aims to enhance the accuracy of damping identification while effectively quantifying uncertainties of identified results. The efficacy of the proposed method is validated through simulated scenarios and applied to the field test of a stay cable in the Sutong Bridge. The results not only demonstrate the method’s high accuracy in identifying damping ratios under VIV but also highlight its capability to effectively quantify the uncertainties in the identification results. This method offers a reliable approach for investigating the evolution of damping in VIV of stay cables and enhances the understanding of the mechanisms behind higher‐order multimodal VIV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
黄昏完成签到,获得积分10
1秒前
Owen应助mu采纳,获得10
2秒前
好困应助Dreamable采纳,获得10
2秒前
2秒前
清脆靳完成签到,获得积分10
3秒前
3秒前
牛肉面完成签到 ,获得积分10
4秒前
阳和启蛰完成签到 ,获得积分10
4秒前
向会妍完成签到,获得积分10
4秒前
所所应助wocao采纳,获得10
4秒前
陌陌完成签到,获得积分10
6秒前
依梦完成签到,获得积分10
6秒前
可期完成签到,获得积分10
6秒前
zhuang完成签到,获得积分20
6秒前
7秒前
111发布了新的文献求助10
7秒前
7秒前
舒适的晓旋完成签到,获得积分10
8秒前
金平卢仙发布了新的文献求助10
8秒前
烟花应助lei采纳,获得10
8秒前
star完成签到,获得积分10
9秒前
栗子完成签到,获得积分10
9秒前
calm完成签到,获得积分10
9秒前
9秒前
苗条辣条完成签到 ,获得积分10
9秒前
keyaner发布了新的文献求助10
10秒前
Serena完成签到 ,获得积分10
10秒前
科研通AI5应助丢丢采纳,获得10
10秒前
凝望那片海2020完成签到,获得积分10
10秒前
11秒前
11秒前
青牧完成签到,获得积分20
11秒前
飘逸的虔完成签到,获得积分10
11秒前
王王完成签到,获得积分10
12秒前
汉堡包应助热心马里奥采纳,获得10
12秒前
33完成签到,获得积分10
13秒前
深情安青应助超甜大西瓜采纳,获得10
13秒前
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733775
求助须知:如何正确求助?哪些是违规求助? 3278009
关于积分的说明 10006192
捐赠科研通 2994159
什么是DOI,文献DOI怎么找? 1642937
邀请新用户注册赠送积分活动 780727
科研通“疑难数据库(出版商)”最低求助积分说明 748987