亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Molecular Origin of the Stretchability and Fatigue‐Resistance of Rotaxane‐based Mechanically Interlocked Polymer Networks

轮烷 材料科学 聚合物 超分子化学 纳米技术 流变学 复合材料 分子 化学 有机化学
作者
Lin Cheng,Wenbin Wang,Ruixue Bai,Wei You,Yuling Liang,Zhiwei Yan,Rongchun Zhang,Xuzhou Yan,Wei Yu
出处
期刊:Angewandte Chemie [Wiley]
被引量:3
标识
DOI:10.1002/anie.202422104
摘要

Rotaxane‐based polymer networks leveraging host‐guest recognition have recently emerged as a versatile platform for developing smart materials. Despite numerous studies on these polymers, their unique mechanical properties are mostly associated with the sliding motion of the macrocycle along the axle, leaving the impact of the presence or absence of interlocked structures on the mechanical performance of materials yet to be directly demonstrated. In this work, we present a densely (pseudo)rotaxane‐based supramolecular polymeric network (SPN) and a mechanically interlocked network (MIN) as model systems to explore how the mechanical interlocking unit dominates the material properties. Specifically, we have achieved a significant transition from SPN to MIN by finely tuning the stopper size, just substituting a methyl with a dimethyl group attached to the phenyl ring. Although their stereochemical structures are similar, a subtle increase in the stopper size can lead to striking improvements in stretchability and anti‐fatigue performance. The stopper size‐relevant dethreading behavior, as evidenced by a combined approach of solid‐state NMR spectroscopy and rheology, is the underlying molecular mechanism for the difference in the macroscopic mechanical properties. We anticipate that the fundamental understanding gained from this work will advance the development of rotaxane‐based materials with emergent functions and applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
crash发布了新的文献求助10
5秒前
顾矜应助CX采纳,获得200
29秒前
crash完成签到,获得积分10
44秒前
搜集达人应助有趣的银采纳,获得10
55秒前
1分钟前
SppikeFPS完成签到,获得积分10
1分钟前
1分钟前
1分钟前
赘婿应助Tiamo采纳,获得10
1分钟前
taster发布了新的文献求助10
1分钟前
1分钟前
zhuzhu完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
坚强的秋白完成签到,获得积分10
2分钟前
MM发布了新的文献求助10
2分钟前
火星上白柏完成签到,获得积分10
2分钟前
xiaoyu完成签到,获得积分10
2分钟前
ding应助sanner采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
sanner发布了新的文献求助10
2分钟前
3分钟前
星辰大海应助sanner采纳,获得10
3分钟前
orixero应助小卢卢快闭嘴采纳,获得10
3分钟前
小卢卢快闭嘴完成签到,获得积分10
3分钟前
3分钟前
3分钟前
LOKL完成签到,获得积分10
3分钟前
wanci应助我能读懂文献采纳,获得10
3分钟前
3分钟前
花凉完成签到,获得积分10
3分钟前
3分钟前
自由怀梦完成签到,获得积分10
3分钟前
花凉发布了新的文献求助10
3分钟前
3分钟前
念辰发布了新的文献求助10
3分钟前
4分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5232655
求助须知:如何正确求助?哪些是违规求助? 4401931
关于积分的说明 13699464
捐赠科研通 4268321
什么是DOI,文献DOI怎么找? 2342519
邀请新用户注册赠送积分活动 1339526
关于科研通互助平台的介绍 1296223