预印本
计算机科学
生态学
多级模型
环境科学
万维网
生物
机器学习
作者
Jung Min Noh,Song Hyun Im,JooYong Park,Jaemyung Kim,Mi Young Lee,Ji‐Yeob Choi
摘要
There is growing interest in the real-time assessment of physical activity (PA) and physiological variables. Acceleration, particularly those collected through wearable sensors, has been increasingly adopted as an objective measure of physical activity. However, sensor-based measures often pose challenges for large-scale studies due to their associated costs, inability to capture contextual information, and restricted user populations. Smartphone-delivered ecological momentary assessment (EMA) offers an unobtrusive and undemanding means to measure PA to address these limitations. This study aimed to evaluate the usability of EMA by comparing its measurement outcomes with 2 self-report assessments of PA: Global Physical Activity Questionnaire (GPAQ) and a modified version of Bouchard Physical Activity Record (BAR). A total of 235 participants (137 female, 98 male, and 94 repeated) participated in one or more 7-day studies. Waist-worn sensors provided by ActiGraph captured accelerometer data while participants completed 3 self-report measures of PA. The multilevel modeling method was used with EMA, GPAQ, and BAR as separate measures, with 6 subdomains of physiological activity (overall PA, overall excluding occupational, transport, exercise, occupational, and sedentary) to model accelerometer data. In addition, EMA and GPAQ were further compared with 6 domains of PA from the BAR as outcome measures. Among the 3 self-reporting instruments, EMA and BAR exhibited better overall performance in modeling the accelerometer data compared to GPAQ (eg EMA daily: β=.387, P<.001; BAR daily: β=.394, P<.001; GPAQ: β=.281, P<.001, based on repeated-only participants with step counts from accelerometer as dependent variables). Multilevel modeling on 3 self-report assessments of PA indicates that smartphone-delivered EMA is a valid and efficient method for assessing PA.
科研通智能强力驱动
Strongly Powered by AbleSci AI