The metabolic poise, or balance, between glycolysis and fatty acid oxidation (FAO) has recently been found to play a critical role in osteogenic differentiation and homeostasis. While simulated microgravity (SMG) is known to impede osteoblast differentiation (OBD) by inhibiting the Wnt/β-catenin pathway, how it affects osteoblast metabolism in this context remains unclear. We previously analyzed the effect of SMG on the differentiation of pre-osteoblast MC3T3-E1 cells and found that it reduced focal adhesion kinase (FAK) activity. This, in turn, downregulated Wnt/β-catenin and two of its downstream targets critical for OBD bone morphogenic protein-2 (BMP2) and type-1 collagen (COL1) formation, leading to a reduction in alkaline phosphatase (ALP) activity and cell matrix mineralization. In this study, we further analyzed how SMG-induced alterations in energy metabolism contribute to the inhibition of OBD in MC3T3-E1 cells. Consistent with our earlier findings, we demonstrated that SMG inhibits OBD by downregulating the collective activity of FAK and the Wnt/β-catenin-BMP2-COL1 transcriptional pathway. Interestingly, we observed that SMG also reduces the abundance of sirtuin-1 (SIRT1), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and carnitine palmitoyl transferase-1α (CPT1A), which are all key metabolic factors regulating mitochondrial number and FAO capacity. Accordingly, we found that the mitochondrial content and FAO potential of MC3T3-E1 cells were lower upon exposure to SMG but were both rescued upon administration of the FAK activator cytotoxic necrotizing factor-1 (CNF1), thereby allowing cells to overcome SMG-induced inhibition of OBD. Taken together, our study indicates that the metabolic regulator SIRT1 may be a new target for reversing SMG-induced bone loss.