超声
平面的
红外线的
材料科学
生物物理学
纳米技术
化学工程
化学
光学
计算机科学
物理
工程类
生物
计算机图形学(图像)
作者
Yubo Liu,Yuchen Song,Zhong‐Hong Zhu,Chao Ji,Jianqing Li,Hanyu Jia,Yang Shi,Fang Hu,Zujin Zhao,Dan Ding,Ben Zhong Tang,Guangxue Feng
标识
DOI:10.1002/anie.202419428
摘要
J-aggregates show great promise in phototherapy, but are limited to specific molecular skeletons and poor molecular self-assembly controllability. Herein, we report a twisted-planar molecular strategy with sonication-induced J-aggregation to develop donor-acceptor (D-A) type J-aggregates for phototherapy. With propeller aggregation-induced emission (AIE) moieties as the twisted subunits and thiophene as the planar π-bridge, the optimal twisted-planar π-interaction in MTSIC induces appropriate slip angle and J-aggregates formation, redshifting the absorption from 624 nm to 790 nm. In contrast, shorter π-planarity results in amorphous aggregates, and elongation promotes charge transfer (CT) coupled J-aggregates. Sonication was demonstrated to be effective in controlling self-assembly behaviors of MTSIC, which enables the transformation from amorphous aggregates to H-intermediates, and finally to stable J-aggregates. After encapsulation with lipid-PEG, the resultant J-dots show enhanced phototherapeutic effects over amorphous dots, including brightness, reactive oxygen species (ROS) generation, and photothermal conversion, delivering superior cancer phototherapy performance. This work not only advances D-A type J-aggregates design but also provides a promising strategy for supramolecular assembly development.
科研通智能强力驱动
Strongly Powered by AbleSci AI