The Legend Continues: The Critical Evidence Showing the Bivalve Farming Is a Carbon Sink With a Novel Budget Framework

水槽(地理) 碳汇 农业 图例 水产养殖 渔业 自然资源经济学 经济 环境科学 生态学 生物 气候变化 地理 地图学 考古
作者
Jianyu He,⎜Zhuoyi Zhu,Xiaojun Yan
出处
期刊:Reviews in Aquaculture [Wiley]
卷期号:17 (2) 被引量:7
标识
DOI:10.1111/raq.70001
摘要

The inclusion of marine shellfish farming, particularly bivalve cultivation, within the budgetary framework of the blue carbon strategy remains a topic of considerable debate. In a recent review, Fabrice et al. concluded that bivalve farming does not function as a CO2 sink [1]. Established understanding illustrated that bivalve farming contributes minimally to carbon sink [2, 3], while some carbon budget models have alternatively classified bivalve farming as a carbon sink [4, 5]. The traditional carbon sink budget has predominantly attributed to the calcification processes (formation of hard shells). These budget studies are built upon the seawater carbonate chemistry, including dissolved inorganic carbon (DIC), total alkalinity (TA), and pCO2 [1]. Considering the coupled contributions to carbon dynamics, we support the ecosystem-wide evaluation of the carbon budget within the bivalve farming habitat. Our observations of air-sea CO2 flux provide definitive evidence that mussel farming can be characterized as a weak carbon sink, although its effectiveness is constrained by seasonal variations [6]. Based on the field observations, experimental studies and model simulations, a total of 28 studies [1] have been published to support that bivalve farming is a CO2 sink since the report of Tang et al. in 2011 [7]. Feng et al. reported that the carbon sequestration efficiency and intensity of cultivated shellfish are much higher than those of artificial forests in China [8]. Previous studies have elucidated various interactions between shellfish and algae [9, 10], such as impacting on the planktonic structure and nutrient availability [11]. We have advanced an alternative process of carbon sink via an ecologically integrated "3 M" (microalgae–mussel–microbiota) consortium [6]. According to the "3 M" framework (Figure 1), we emphasize the positive contributions of mussels in carbon dynamics, particularly through the continuous consumption of microalgal cells and active recruitment of functional microbes. Consequently, phytoplankton absorb more CO2 from the air and maintain the oceanic primary productivity. Filter-feeding mussels function analogously to a pump, accelerating the turnover of microalgae and facilitating the downward deposition of algae-derived carbon through their feeding activities. Functional microbes convert bioavailable carbon into more stable forms (e.g., recalcitrant carbon, RC), thereby expanding the contributions of mariculture carbon sink. Given the global distribution of bivalves, the challenges of the "3 M" consortium deserve further consideration: quantifying the carbon capture and burial capacity, expanding on the seasonal variability of carbon flux, and clarifying the mechanistic (chemical and biological) pathways of sedimentary RC accumulation in the mussel farming zone. We believe that these studies would shed new light on carbon sinks in mussel farming. Jianyu He: conceptualization, writing – original draft, writing – review and editing, project administration, visualization, funding acquisition. Zhuoyi Zhu: writing – review and editing. Xiaojun Yan: conceptualization, funding acquisition, writing – review and editing. This study was supported by Key R&D projects in Zhejiang Province (Grant No. 2023C03120); National Natural Science Foundation of China (Grant No. 32200083, 42020104009); Zhejiang Provincial Natural Science Foundation of China (Grant No. LTGS23C010001); Science Foundation of Donghai Laboratory (Grant No. DH-2022KF0219). The authors declare no conflicts of interest. Data sharing is not applicable to this article as no new data were created or analyzed in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aurora发布了新的文献求助10
1秒前
岑岑岑完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
仁者发布了新的文献求助20
3秒前
3秒前
现实的白猫完成签到,获得积分20
6秒前
7秒前
Muzz发布了新的文献求助10
8秒前
XMH发布了新的文献求助10
9秒前
隐形曼青应助优美紫槐采纳,获得10
9秒前
科目三应助Lendar采纳,获得10
9秒前
彭于晏应助过时的棒棒糖采纳,获得100
10秒前
qhtwld发布了新的文献求助10
14秒前
16秒前
19秒前
lalala完成签到,获得积分10
20秒前
ddd完成签到,获得积分10
20秒前
21秒前
无花果应助1526918042采纳,获得10
21秒前
21秒前
笋笋完成签到,获得积分10
22秒前
Owen应助南枝焙雪采纳,获得10
22秒前
踌躇前半生完成签到,获得积分10
22秒前
psylan完成签到,获得积分10
22秒前
Magic麦发布了新的文献求助10
23秒前
科研闲人完成签到,获得积分10
23秒前
24秒前
Harlotte发布了新的文献求助10
24秒前
能干冰露完成签到,获得积分10
24秒前
山月鹿完成签到,获得积分10
25秒前
鸠摩智发布了新的文献求助10
25秒前
李健的小迷弟应助Lay采纳,获得10
25秒前
xiaominl发布了新的文献求助80
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606214
求助须知:如何正确求助?哪些是违规求助? 4690656
关于积分的说明 14864955
捐赠科研通 4704298
什么是DOI,文献DOI怎么找? 2542488
邀请新用户注册赠送积分活动 1508024
关于科研通互助平台的介绍 1472232