摘要
Chapter 26 Multi-Targeted Antivirals A Novel Drug Design Strategy for Potent SARS-CoV -2 Inhibitors Bing Ye, Bing YeSearch for more papers by this authorLetian Song, Letian SongSearch for more papers by this authorMeehyein Kim, Meehyein KimSearch for more papers by this authorShenghua Gao, Shenghua GaoSearch for more papers by this authorPeng Zhan, Peng ZhanSearch for more papers by this authorXinyong Liu, Xinyong LiuSearch for more papers by this author Bing Ye, Bing YeSearch for more papers by this authorLetian Song, Letian SongSearch for more papers by this authorMeehyein Kim, Meehyein KimSearch for more papers by this authorShenghua Gao, Shenghua GaoSearch for more papers by this authorPeng Zhan, Peng ZhanSearch for more papers by this authorXinyong Liu, Xinyong LiuSearch for more papers by this author Book Editor(s):Jens-Uwe Peters, Jens-Uwe PetersSearch for more papers by this author First published: 27 December 2024 https://doi.org/10.1002/9781394182862.ch26 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookxLinkedInRedditWechat Summary The spread of SARS-CoV-2 remains a major public health problem that threatens human life and health. As an enveloped single-stranded RNA virus, SARS-CoV-2 utilizes key proteins like main protease (M pro ), papain-like protease (PL pro ), RNA-dependent RNA polymerase (RdRp), and Spike (S) protein through its life cycle, including invasion, replication, translation, and assembly. These proteins, along with specific host factors from human cells, have been exploited as important targets for therapeutic interventions against SARS-CoV-2. In addition to conventional antiviral agents targeting individual viral components, researchers have developed a multi-targeted approach to identify highly potent inhibitors against SARS-CoV-2 that simultaneously target multiple viral and host cell factors to impede virus amplification. Various multi-targeted inhibitors have been developed so far, including peptide-like protease inhibitors, nucleosides, selenium-containing compounds, and natural products. These research findings were inspired by drug design strategies such as co-pharmacophore screening and molecular hybridization which could be employed to discover more potent multi-targeted SARS-CoV-2 inhibitors. References Choi , J.Y. and Smith , D.M. ( 2022 ). SARS-CoV-2 variants of concern . Yonsei Med. J. 62 : 961 – 968 . 10.3349/ymj.2021.62.11.961 Google Scholar Feikin , D.R. , Higdon , M.M. , Abu-Raddad , L.J. et al. ( 2022 ). Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression . Lancet 399 : 924 – 944 . 10.1016/S0140-6736(22)00152-0 CASPubMedWeb of Science®Google Scholar Yang , H. and Rao , Z. ( 2021 ). Structural biology of SARS-CoV-2 and implications for therapeutic development . Nat. Rev. Microbiol. 19 : 685 – 700 . 10.1038/s41579-021-00630-8 CASPubMedWeb of Science®Google Scholar Chakraborty , C. , Bhattacharya , M. , Mallick , B. et al. ( 2021 ). SARS-CoV-2 protein drug targets landscape: a potential pharmacological insight view for the new drug development . Expert. Rev. Clin. Pharmacol. 14 : 225 – 238 . 10.1080/17512433.2021.1874348 CASPubMedGoogle Scholar Tan , B. , Joyce , R. , Tan , H. et al. ( 2023 ). SARS-CoV-2 main protease drug design, assay development, and drug resistance studies . Acc. Chem. Res. 56 : 157 – 168 . 10.1021/acs.accounts.2c00735 CASPubMedWeb of Science®Google Scholar Citarella , A. , Scala , A. , Piperno , A. , and Micale , N. ( 2021 ). SARS-CoV-2 M pro : A potential target for peptidomimetics and small-molecule inhibitors . Biomol. Ther. 11 ( 4 ): 607 . CASGoogle Scholar Jackson , C.B. , Farzan , M. , Chen , B. , and Choe , H. ( 2022 ). Mechanisms of SARS-CoV-2 entry into cells . Nat. Rev. Mol. Cell Biol. 23 : 3 – 20 . 10.1038/s41580-021-00418-x CASPubMedWeb of Science®Google Scholar Muralidar , S. , Gopal , G. , and Visaga Ambi , S. ( 2021 ). Targeting the viral-entry facilitators of SARS-CoV-2 as a therapeutic strategy in COVID-19 . J. Med. Virol. 93 : 5260 – 5276 . 10.1002/jmv.27019 CASPubMedWeb of Science®Google Scholar Xiu , S. , Dick , A. , Ju , H. et al. ( 2020 ). Inhibitors of SARS-CoV-2 entry: current and future opportunities . J. Med. Chem. 63 : 12256 – 12274 . 10.1021/acs.jmedchem.0c00502 CASPubMedWeb of Science®Google Scholar Ma , C. , Sacco , M.D. , Hurst , B. et al. ( 2020 ). Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease . Cell Res. 30 : 678 – 692 . 10.1038/s41422-020-0356-z CASPubMedWeb of Science®Google Scholar Mao , L. , Shaabani , N. , Zhang , X. et al. ( 2024 ). Olgotrelvir, a dual inhibitor of SARS-CoV-2 Mpro and cathepsin L, as a standalone antiviral oral intervention candidate for COVID-19 . Med. 5 : 42 – 61 . 10.1016/j.medj.2023.12.004 CASPubMedGoogle Scholar Costanzi , E. , Kuzikov , M. , Esposito , F. et al. ( 2021 ). Structural and biochemical analysis of the dual inhibition of MG-132 against SARS-CoV-2 main protease (Mpro/3CLpro) and human cathepsin-L . Int. J. Mol. Sci. 22 : 11779 . 10.3390/ijms222111779 CASPubMedWeb of Science®Google Scholar Ma , X.R. , Alugubelli , Y.R. , Ma , Y. et al. ( 2022 ). MPI8 is potent against SARS-CoV-2 by inhibiting dually and selectively the SARS-CoV-2 main protease and the host cathepsin L . ChemMedChem 17 : e202100456 . Google Scholar Mondal , S. , Chen , Y. , Lockbaum , G.J. et al. ( 2022 ). Dual inhibitors of main protease (MPro) and cathepsin L as potent antivirals against SARS-CoV2 . J. Am. Chem. Soc. 144 : 21035 – 21045 . 10.1021/jacs.2c04626 CASPubMedGoogle Scholar Breidenbach , J. , Lemke , C. , Pillaiyar , T. et al. ( 2021 ). Targeting the main protease of SARS-CoV-2: from the establishment of high throughput screening to the design of tailored inhibitors . Angew. Chem. Int. Ed. Engl. 60 : 10423 – 10429 . 10.1002/anie.202016961 CASPubMedWeb of Science®Google Scholar Ma , C. , Hu , Y. , Townsend , J.A. et al. ( 2020 ). ACS Pharmacol. Transl. Sci. 3 : 1265 – 1277 . 10.1021/acsptsci.0c00130 CASPubMedGoogle Scholar Meewan , I. , Kattoula , J. , Kattoula , J.Y. et al. ( 2022 ). Discovery of triple inhibitors of both SARS-CoV-2 proteases and human cathepsin L . Pharmaceuticals 15 : 744 . 10.3390/ph15060744 CASGoogle Scholar Fuzo , C.A. , Martins , R.B. , Fraga-Silva , T.F.C. et al. ( 2022 ). Celastrol: a lead compound that inhibits SARS-CoV-2 replication, the activity of viral and human cysteine proteases, and virus-induced IL-6 secretion . Drug Dev. Res. 83 : 1623 – 1640 . 10.1002/ddr.21982 CASPubMedWeb of Science®Google Scholar Tedesco , F. , Calugi , L. , Lenci , E. , and zTrabocchi , A . ( 2022 ). Peptidomimetic small-molecule inhibitors of 3CLPro activity and spike-ACE2 interaction: Toward dual-action molecules against coronavirus infections . J. Org. Chem. 87 : 12041 – 12051 . 10.1021/acs.joc.2c01047 CASPubMedGoogle Scholar Li , J. , Zhong , X. , Li , H. et al. ( 2024 ). Design, synthesis and biological evaluation of biaryl amide derivatives against SARS-CoV-2 with dual-target mechanism . Eur. J. Med. Chem. 264 : 115978 . 10.1016/j.ejmech.2023.115978 Google Scholar Cantuti-Castelvetri , L. , Ojha , R. , Pedro , L.D. et al. ( 2020 ). Science 370 : 856 – 860 . 10.1126/science.abd2985 CASPubMedWeb of Science®Google Scholar Daly , J.L. , Simonetti , B. , Klein , K. et al. ( 2020 ). Neuropilin-1 is a host factor for SARS-CoV-2 infection . Science 370 : 861 – 865 . 10.1126/science.abd3072 CASPubMedWeb of Science®Google Scholar Yin , S. , Mei , S. , Li , Z. et al. ( 2022 ). Non-covalent cyclic peptides simultaneously targeting Mpro and NRP1 are highly effective against Omicron BA.2.75 . Front. Pharmacol. 13 : 1037993 . 10.3389/fphar.2022.1037993 CASPubMedGoogle Scholar Casari , I. , Manfredi , M. , Metharom , P. , and Falasca , M. ( 2021 ). Dissecting lipid metabolism alterations in SARS-CoV-2 . Prog. Lipid Res. 82 : 101092 . 10.1016/j.plipres.2021.101092 PubMedGoogle Scholar Snider , J.M. , You , J.K. , Wang , X. et al. ( 2021 ). Group IIA secreted phospholipase A2 is associated with the pathobiology leading to COVID-19 mortality . J. Clin. Invest. 131 : e149236 . 10.1172/JCI149236 PubMedGoogle Scholar Theodoropoulou , M.A. , Koutoulogenis , G.S. , Zhang , L. et al. ( 2022 ). Identification of a dual inhibitor of secreted phospholipase A2 (GIIA sPLA2) and SARS-CoV-2 main protease . Pharmaceuticals (Basel) 15 : 961 . 10.3390/ph15080961 CASPubMedGoogle Scholar Yi , Y. , Li , W. , Liu , K. et al. ( 2023 ). Licorice-saponin A3 is a broad-spectrum inhibitor for COVID-19 by targeting viral spike and anti-inflammation . J. Pharm, Anal. 14 : 115 – 127 . 10.1016/j.jpha.2023.05.011 PubMedGoogle Scholar Yi , Y. , Yu , R. , Xue , H. et al. ( 2024 ). Chrysin 7-O-β-D-glucuronide, a dual inhibitor of SARS-CoV-2 3CLpro and PLpro, for the prevention and treatment of COVID-19 . Int. J. Antimicrob. Agents 63 : 107039 . 10.1016/j.ijantimicag.2023.107039 PubMedGoogle Scholar Hashimoto , R. , Sakamoto , A. , Deguchi , S. et al. ( 2021 ). Dual inhibition of TMPRSS2 and Cathepsin B prevents SARS-CoV-2 infection in iPS cells . Mol. Ther. Nucleic Acids 26 : 1107 – 1114 . 10.1016/j.omtn.2021.10.016 CASPubMedWeb of Science®Google Scholar Wang , H. , Yang , Q. , Liu , X. et al. ( 2023 ). Structure-based discovery of dual pathway inhibitors for SARS-CoV-2 entry . Nat. Commun. 14 : 7574 . 10.1038/s41467-023-42527-5 CASPubMedWeb of Science®Google Scholar Xie , X. , Lan , Q. , Zhao , J. et al. ( 2024 ). Structure-based design of pan-coronavirus inhibitors targeting host cathepsin L and calpain-1 . Signal Transduct. Target. Ther. 9 : 54 . 10.1038/s41392-024-01758-8 CASPubMedGoogle Scholar Mao , B. , Le-Trilling , V.T.K. , Wang , K. et al. ( 2022 ). Obatoclax inhibits SARS-CoV-2 entry by altered endosomal acidification and impaired cathepsin and furin activity in vitro . Emerg. Microb. Infect. 11 : 483 – 497 . 10.1080/22221751.2022.2026739 CASPubMedGoogle Scholar Xu , T. and Zhang , L. ( 2023 ). Current understanding of nucleoside analogs inhibiting the SARS-CoV-2 RNA-dependent RNA polymerase . Comput. Struct. Biotechnol. J. 21 : 4385 – 4394 . 10.1016/j.csbj.2023.09.001 CASPubMedWeb of Science®Google Scholar Wang , Q. , Wu , J. , Wang , H. et al. ( 2020 ). Structural basis for rna replication by the sars-cov-2 polymerase . Cell 182 : 417 – 428 . 10.1016/j.cell.2020.05.034 CASPubMedWeb of Science®Google Scholar Park , G.J. , Osinski , A. , Hernandez , G. et al. ( 2022 ). The mechanism of RNA capping by SARS-CoV-2 . Nature 609 : 793 – 800 . CASPubMedWeb of Science®Google Scholar Good , S.S. , Westover , J. , Jung , K.H. et al. ( 2021 ). AT-527, a double prodrug of a guanosine nucleotide analog, is a potent inhibitor of SARS-CoV-2 in vitro and a promising oral antiviral for treatment of COVID-19 . Antimicrob. Agents Chemother. 65 : e02479 – e02420 . 10.1128/AAC.02479-20 CASPubMedWeb of Science®Google Scholar Horga , A. , Saenz , R. , Yilmaz , G. et al. ( 2023 ). Oral bemnifosbuvir (AT-527) vs placebo in patients with mild-to-moderate COVID-19 in an outpatient setting (MORNINGSKY) . Future Virol. 10 : 2217/fvl-2023-0115 . Google Scholar Shannon , A. , Fattorini , V. , Sama , B. et al. ( 2023 ). A dual mechanism of action of AT-527 against SARS-CoV-2 polymerase . Nat. Commun. 13 : 621 . 10.1038/s41467-022-28113-1 Google Scholar Driouich , J.S. , Cochin , M. , Lingas , G. et al. ( 2021 ). Favipiravir antiviral efficacy against SARS-CoV-2 in a hamster model . Nat. Commun. 12 : 1735 . 10.1038/s41467-021-21992-w CASPubMedWeb of Science®Google Scholar Kaptein , S.J.F. , Jacobs , S. , Langendries , L. et al. ( 2020 ). Favipiravir at high doses has potent antiviral activity in SARS-CoV-2-infected hamsters, whereas hydroxychloroquine lacks activity . Proc. Natl. Acad. Sci. USA 117 : 26955 – 26965 . 10.1073/pnas.2014441117 CASPubMedWeb of Science®Google Scholar Marlin , R. , Desjardins , D. , Contreras , V. et al. ( 2022 ). Antiviral efficacy of favipiravir against Zika and SARS-CoV-2 viruses in non-human primates . Nat. Commun. 13 : 5108 . 10.1038/s41467-022-32565-w CASPubMedGoogle Scholar Boretti , A. ( 2020 ). Favipiravir use for SARS CoV-2 infection . Pharmacol. Rep. 72 : 1542 – 1552 . 10.1007/s43440-020-00175-2 CASPubMedWeb of Science®Google Scholar Solaymani-Dodaran , M. , Ghanei , M. , Bagheri , M. et al. ( 2021 ). Safety and efficacy of Favipiravir in moderate to severe SARS-CoV-2 pneumonia . Int. Immunopharmacol. 95 : 107522 . 10.1016/j.intimp.2021.107522 PubMedGoogle Scholar Naydenova , K. , Muir , K.W. , Wu , L.F. et al. ( 2021 ). Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the presence of favipiravir-RTP . Proc. Natl. Acad. Sci. USA 118 : e2021946118 . 10.1073/pnas.2021946118 PubMedGoogle Scholar Shannon , A. , Selisko , B. , Le , N.T. et al. ( 2020 ). Rapid incorporation of Favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis . Nat. Commun. 11 : 4682 . 10.1038/s41467-020-18463-z CASPubMedWeb of Science®Google Scholar Hadj Hassine , I. , Ben M'hadheb , M. , and Menéndez-Arias , L. ( 2022 ). Lethal mutagenesis of RNA viruses and approved drugs with antiviral mutagenic activity . Viruses 14 : 841 . 10.3390/v14040841 CASPubMedGoogle Scholar Wiedemar , N. , Hauser , D.A. , and Mäser , P. ( 2020 ). 100 years of suramin . Antimicrob. Agents Chemother. 64 : e01168 – e01119 . 10.1128/AAC.01168-19 CASPubMedWeb of Science®Google Scholar Salgado-Benvindo , C. , Thaler , M. , Tas , A. et al. ( 2020 ). Suramin inhibits SARS-CoV-2 infection in cell culture by interfering with early steps of the replication cycle . Antimicrob. Agents Chemother. 64 : e00900 – e00920 . 10.1128/AAC.00900-20 CASPubMedGoogle Scholar Yin , W. , Luan , X. , Li , Z. et al. ( 2021 ). Structural basis for inhibition of the SARS-CoV-2 RNA polymerase by suramin . Nat. Struct. Mol. Biol. 28 : 319 – 325 . 10.1038/s41594-021-00570-0 CASPubMedWeb of Science®Google Scholar Zhu , W. , Xu , M. , Chen , C.Z. et al. ( 2020 ). Identification of SARS-CoV-2 3CL protease inhibitors by a quantitative high-throughput screening . ACS Pharmacol. Transl. Sci. 3 : 1008 – 1016 . 10.1021/acsptsci.0c00108 CASPubMedGoogle Scholar Kwon , P.S. , Xu , S. , Oh , H. et al. ( 2023 ). Suramin binds and inhibits infection of SARS-CoV-2 through both spike protein-heparan sulfate and ACE2 receptor interactions . Commun. Biol. 6 : 387 . 10.1038/s42003-023-04789-z CASPubMedGoogle Scholar Samrat , S.K. , Bashir , Q. , Zhang , R. et al. ( 2023 ). A universal fluorescence polarization high throughput screening assay to target the SAM-binding sites of SARS-CoV-2 and other viral methyltransferases . Emerg. Microb. Infect. 12 : 2204164 . 10.1080/22221751.2023.2204164 PubMedGoogle Scholar Arabi-Jeshvaghani , F. , Javadi-Zarnaghi , F. , and Ganjalikhany , M.R. ( 2023 ). Analysis of critical protein-protein interactions of SARS-CoV-2 capping and proofreading molecular machineries towards designing dual target inhibitory peptides . Sci. Rep. 13 : 350 . 10.1038/s41598-022-26778-8 CASPubMedGoogle Scholar Devkota , K. , Schapira , M. , Perveen , S. et al. ( 2021 ). Probing the SAM binding site of SARS-CoV-2 Nsp14 in vitro using SAM competitive inhibitors guides developing selective bisubstrate inhibitors . SLAS Discov. 26 : 1200 – 1211 . 10.1177/24725552211026261 CASPubMedWeb of Science®Google Scholar Li , F. , Ghiabi , P. , Hajian , T. et al. ( 2023 ). SS148 and WZ16 inhibit the activities of nsp10-nsp16 complexes from all seven human pathogenic coronaviruses . Biochim. Biophys. Acta Gen. Subj. 1867 : 130319 . 10.1016/j.bbagen.2023.130319 Google Scholar Klima , M. , Khalili Yazdi , A. , Li , F. et al. ( 2022 ). Crystal structure of SARS-CoV-2 nsp10-nsp16 in complex with small molecule inhibitors, SS148 and WZ16 . Protein Sci. 31 : e4395 . 10.1002/pro.4395 PubMedGoogle Scholar Ren , P.X. , Shang , W.J. , Yin , W.C. et al. ( 2022 ). A multi-targeting drug design strategy for identifying potent anti-SARS-CoV-2 inhibitors . Acta Pharmacol. Sin. 43 : 483 – 493 . 10.1038/s41401-021-00668-7 CASPubMedWeb of Science®Google Scholar Jin , Z. , Du , X. , Xu , Y. et al. ( 2020 ). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors . Nature 582 : 289 – 293 . 10.1038/s41586-020-2223-y CASPubMedWeb of Science®Google Scholar Weglarz-Tomczak , E. , Tomczak , J.M. , Talma , M. et al. ( 2021 ). Identification of ebselen and its analogues as potent covalent inhibitors of papain-like protease from SARS-CoV-2 . Sci. Rep. 11 : 3640 . 10.1038/s41598-021-83229-6 CASPubMedWeb of Science®Google Scholar Amporndanai , K. , Meng , X. , Shang , W. et al. ( 2021 ). Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives . Nat. Commun. 12 : 3061 . 10.1038/s41467-021-23313-7 CASPubMedWeb of Science®Google Scholar Sargsyan , K. , Lin , C.C. , Chen , T. et al. ( 2020 ). Multi-targeting of functional cysteines in multiple conserved SARS-CoV-2 domains by clinically safe Zn-ejectors . Chem. Sci. 11 : 9904 – 9909 . 10.1039/D0SC02646H CASPubMedWeb of Science®Google Scholar Baddock , H.T. , Brolih , S. , Yosaatmadja , Y. et al. ( 2022 ). Characterization of the SARS-CoV-2 ExoN (nsp14ExoN-nsp10) complex: implications for its role in viral genome stability and inhibitor identification . Nucleic Acids Res. 50 : 1484 – 1500 . 10.1093/nar/gkab1303 CASPubMedWeb of Science®Google Scholar Zmudzinski , M. , Rut , W. , Olech , K. et al. ( 2023 ). Ebselen derivatives inhibit SARS-CoV-2 replication by inhibition of its essential proteins: PLpro and Mpro proteases, and nsp14 guanine N7-methyltransferase . Sci. Rep. 13 : 9161 . 10.1038/s41598-023-35907-w CASPubMedGoogle Scholar Liu , W. , Wang , J. , Wang , S. et al. ( 2023 ). Discovery of new non-covalent and covalent inhibitors targeting SARS-CoV-2 papain-like protease and main protease . Bioorg. Chem. 140 : 106830 . 10.1016/j.bioorg.2023.106830 Google Scholar Yu , W. , Zhao , Y. , Ye , H. et al. ( 2022 ). Structure-based design of a dual-targeted covalent inhibitor against papain-like and main proteases of SARS-CoV-2 . J. Med. Chem. 65 : 16252 – 16267 . 10.1021/acs.jmedchem.2c00954 CASPubMedGoogle Scholar Kattula , B. , Reddi , B. , Jangam , A. et al. ( 2023 ). Development of 2-chloroquinoline based heterocyclic frameworks as dual inhibitors of SARS-CoV-2 MPro and PLPro . Int. J. Biol. Macromol. 242 : 124772 . 10.1016/j.ijbiomac.2023.124772 PubMedGoogle Scholar Di Sarno , V. , Lauro , G. , Musella , S. et al. ( 2021 ). Identification of a dual acting SARS-CoV-2 proteases inhibitor through in silico design and step-by-step biological characterization . Eur. J. Med. Chem. 226 : 113863 . 10.1016/j.ejmech.2021.113863 PubMedGoogle Scholar Santos , L.H. , Kronenberger , T. , Almeida , R.G. et al. ( 2022 ). Structure-based identification of naphthoquinones and derivatives as novel inhibitors of main protease Mpro and Papain-like protease PLpro of SARS-CoV-2 . J. Chem. Inf. Model. 62 : 6553 – 6573 . 10.1021/acs.jcim.2c00693 CASPubMedWeb of Science®Google Scholar Puhl , A.C. , Godoy , A.S. , Noske , G.D. et al. ( 2023 ). Discovery of PLpro and Mpro inhibitors for SARS-CoV-2 . ACS Omega 8 : 22603 – 22612 . 10.1021/acsomega.3c01110 CASPubMedGoogle Scholar Ellinger , B. , Bojkova , D. , Zaliani , A. et al. ( 2021 ). A SARS-CoV-2 cytopathicity dataset generated by high-content screening of a large drug repurposing collection . Sci. Data 8 : 70 . 10.1038/s41597-021-00848-4 CASPubMedWeb of Science®Google Scholar Shen , L. , Niu , J. , Wang , C. et al. ( 2019 ). High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses . J. Virol. 93 : e00023 – e00019 . 10.1128/JVI.00023-19 CASPubMedWeb of Science®Google Scholar Zang , Y. , Su , M. , Wang , Q. et al. ( 2022 ). High-throughput screening of SARS-CoV-2 main and papain-like protease inhibitors . Protein Cell 14 : 17 – 27 . PubMedGoogle Scholar Ayoup , M.S. , ElShafey , M.M. , Abdel-Hamid , H. et al. ( 2023 ). Repurposing 1,2,4-oxadiazoles as SARS-CoV-2 PLpro inhibitors and investigation of their possible viral entry blockade potential . Eur. J. Med. Chem. 252 : 115272 . 10.1016/j.ejmech.2023.115272 PubMedGoogle Scholar Su , H.X. , Yao , S. , Zhao , W.F. et al. ( 2020 ). Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients . Acta Pharmacol. Sin. 41 : 1167 – 1177 . 10.1038/s41401-020-0483-6 CASPubMedWeb of Science®Google Scholar Zandi , K. , Musall , K. , Oo , A. et al. ( 2021 ). Baicalein and baicalin inhibit SARS-CoV-2 RNA-dependent-RNA polymerase . Microorganisms 9 : 893 . 10.3390/microorganisms9050893 CASPubMedWeb of Science®Google Scholar Murugan , N.A. , Kumar , S. , Jeyakanthan , J. , and Srivastava , V. ( 2020 ). Searching for target-specific and multi-targeting organics for Covid-19 in the Drugbank database with a double scoring approach . Sci. Rep. 10 : 19125 . 10.1038/s41598-020-75762-7 CASPubMedWeb of Science®Google Scholar Riva , L. , Yuan , S. , Yin , X. et al. ( 2020 ). Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing . Nature 586 : 113 – 119 . 10.1038/s41586-020-2577-1 CASPubMedWeb of Science®Google Scholar Yuan , S. , Yin , X. , Meng , X. et al. ( 2021 ). Clofazimine broadly inhibits coronaviruses including SARS-CoV-2 . Nature 593 : 418 – 423 . 10.1038/s41586-021-03431-4 CASPubMedWeb of Science®Google Scholar Zhang , X. , Shi , Y. , Guo , Z. et al. ( 2022 ). Clofazimine derivatives as potent broad-spectrum antiviral agents with dual-target mechanism . Eur. J. Med. Chem. 234 : 114209 . 10.1016/j.ejmech.2022.114209 Google Scholar Xu , Z. , Zou , Y. , Gao , X. et al. ( 2022 ). Dual-targeting cyclic peptides of receptor-binding domain (RBD) and main protease (Mpro) as potential drug leads for the treatment of SARS-CoV-2 infection . Front. Pharmacol. 13 : 1041331 . 10.3389/fphar.2022.1041331 CASPubMedGoogle Scholar Zhan , P. and Liu , X. ( 2009 ). Designed multiple ligands: an emerging anti-HIV drug discovery paradigm . Curr. Pharm. Des. 15 : 1893 – 1917 . 10.2174/138161209788453266 CASPubMedWeb of Science®Google Scholar Zhan , P. and Liu , X. ( 2013 ). Rationally designed multitarget anti-HIV agents . Curr. Pharm. Des. 20 : 1743 – 1758 . CASGoogle Scholar Polypharmacology: Strategies for Multi‐Target Drug Discovery ReferencesRelatedInformation